# On M.N. Lagutinski method for integration of ordinary differential equations 

Malykh M.D.***

*MSU Department of Materials Science.
**Department of Applied Informatics and Probability, Peoples' Friendship University of Russia.
malykhmd@yandex.ru
20 apr. 2016, ver. April 20, 2016

## I. Beaune's problem

## Florimond de Beaune and Descart, 1640

In modern terms Florimond de Beaune asked Descartes how to find an algebraic integral of the differential equation

$$
y^{\prime}=y .
$$

And Descartes wanted to find the solution by selection of coefficients in equation

$$
y^{m}=a_{0}+a_{1} x+\cdots+a_{n} x^{n},
$$

but stopped on $n, m \simeq 100$.

## Main Problem

## Problem (de Beaune, 1640)

For given ordinary differential equation

$$
p d x+q d y=0, \quad p, q \in \mathbb{Q}[x, y],
$$

the problem, attributed below to Beaune, consists of finding an integral $w$ from $\mathbb{C}(x, y)$.

## Test for Maple

Let $u, v$ be polynomials from $\mathbb{Z}[x, y]$. Then quotient $w=u / v$ is an integral of eq.

$$
\begin{equation*}
\left(v \frac{\partial u}{\partial x}-u \frac{\partial v}{\partial x}\right) d x+\left(v \frac{\partial u}{\partial y}-u \frac{\partial v}{\partial y}\right) d y=0 \tag{1}
\end{equation*}
$$

Put for example

$$
u=x^{4} y^{11}+x^{10}+y, \quad v=2 x^{11} y^{8}+y^{10}+3 x y
$$

Standard solver dsolve in Maple can solve the eq. (1) in quadratures

$$
\int r d x+s d y=C, \quad r, s \in \mathbb{Q}(x, y)
$$

but the explicit formula occupies two screens and Maple can't calculate this integrals.

## Triviality of the test

## Generated ODE

$$
p(x, y) d x+q(x, y) d y=0, \quad p, q \in \mathbb{Q}[x, y]
$$

has several linear independent integrating divisors in the ring $\mathbb{Q}[x, y]$.
Integrating divisor $\chi$ is any nonconstant solution of eq.

$$
\chi^{2} \frac{\partial}{\partial x} \frac{q}{\chi}=\chi^{2} \frac{\partial}{\partial y} \frac{p}{\chi} .
$$

So we can find an integrating divisor in the ring $\mathbb{Q}[x, y]$ by indeterminate coefficients method from a system of linear algebraic equation.

## Maple fail

Maple looks for an integrating divisor in the ring $\mathbb{C}[x, y]$ as a part of 2nd DETools algorithm [Cheb-Terrab, 1996].
However:

- symgen returns two integrating divisors, so its ratio is required integral,
- dsolve ignores 2nd divisor and writes a quadrature

$$
\int \frac{p(x, y) d x+q(x, y) d y}{\chi_{1}(x, y)}=C
$$

- int can't calculate this integrals in finite terms.

So in general symgen can solve the problem, but dsolve damages the result.

## Maple fail in case of multiple factors

If $p$ and $q$ have common factors there are insuperable difficulties. In the beginning Maple reduces common factors in ODE

$$
p(x, y) d x+q(x, y) d y=0, \quad p, q \in \mathbb{C}[x, y] .
$$

Reducible equation hasn't any integration divisors in the ring $\mathbb{C}[x, y]$ and finding of integration divisor in $\mathbb{C}(x, y)$ lids to nonlinear algebraic equation for coefficients.
For ex.
$u=\left(x^{2}+y\right)^{5}\left(x-y^{6}+1\right)+1, \quad v=\left(13 x y^{8}+y^{5}+3 x y+2\right)\left(x^{2}+y\right)^{4}$,
symgen finds only one divisor and can't solve the problem.

## Main difficulties

If eq.

$$
p(x, y) \cdot d x+q(x, y) \cdot d y=0, \quad p, q \in \mathbb{Q}[x, y],
$$

has a rational integral, then integral curves consist a irreducible linear pencil

$$
u(x, y)+c \cdot v(x, y)=0, \quad u, v \in \mathbb{C}[x, y], c \in \mathbb{C}
$$

Poincaré, 1890 [Guvres, vol. 3.]: How to estimate the pencil order? - This is an open question and appears in [Chèze, 2010]. In all algorithms for solution of Beaune's problem the user must give a bound $N$ for degree of required integral.

## Two methods of solution

- Method of Jacques-Arthur Weil, 1985, use a solution of Cauchy problem

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=-\frac{p}{q} \quad \bmod x^{N^{2}+1} \\
y(0)=c
\end{array}\right.
$$

in $\mathbb{Q}(c)[x]$ and have several realizations [Bostan et all, 2013].

- Method of M.N. Lagutinski, 1913, is a generalization of Kramer's formulas from linear algebra.


# II. Lagutinski theory and modern computer algebra 

## Mikhail Nikolaevich Lagutinski (1871-1915)

On the eve of World War I M.N. Lagutinski worked at Kharkov university and died during academical training in Germany.

- Bio in Russian: Istoriko-matematicheskie issledovanija. 2001. T. 6 (41). P. 111-127.
- Bio in French: Historia Mathematica. Volume 25, Issue 3, August 1998, Pag. 245-264.
- Works: http://www.mathnet.ru/php/person.phtml? option_lang=eng\&personid=39928

Lagutinski method was partially reopened in 1990-2000; his works became known thanks to activity of Jean-Marie Strelcyn (Université de Rouen) [J.-M. Strelcyn, 2008], [Chèze, 2010].

## Differential ring with basis

Let $R$ be a ring with differentiation $D$ and constant field $k$.
Countable set

$$
B=\left\{\varphi_{1}, \varphi_{2}, \ldots,\right\}, \quad \varphi_{n} \in R
$$

is called a basis of ring $R$ if:
(1) any element $\psi$ from the ring $R$ can be describe as linear combination of elements from $B$ under constant field:

$$
\psi=c_{n_{1}} \varphi_{n_{1}}+\cdots+c_{n_{m}} \varphi_{n_{m}}, \quad c_{n_{1}}, \ldots, c_{n_{m}} \in k
$$

(2) for any integers $i, j$ there is an integer $n>\max (i, j)$ such that

$$
\varphi_{i} \varphi_{j}=\varphi_{n}
$$

Maximum from numbers $n_{1}, \ldots, n_{m}$ we will called as order of $\psi$ with respect to the basis $B$.

## Example in Sagemath

Consider the ring

$$
\text { sage: R. }\langle x, y\rangle=\text { PolynomialRing (QQ, 2) }
$$

with the differentiation

$$
\begin{gathered}
\text { sage: } \begin{array}{c}
\text { }=l a m b d a \operatorname{phi}: y *(x+1) * \operatorname{diff}(p h i, x)+(y \\
\sim 2+x+2) * \operatorname{diff}(\text { phi }, y)
\end{array}
\end{gathered}
$$

Put the standard glex-basis as

```
sage: B = sorted(((1+x+y) ^5).monomials(),
reverse=0)

So we have
```

sage: B[3]4

```
y"2 ..... 5
sage: D(x^2+y) ..... 6
\(2 * \mathrm{x}\) ^2*y \(+2 * \mathrm{x} * \mathrm{y}+\mathrm{y}{ }^{\wedge} 2+\mathrm{x}+2\) ..... 7

\section*{Lagutinski determinant}

\section*{Definition}

Determinant of the matrix
\[
\left(\begin{array}{cccc}
\varphi_{1} & \varphi_{2} & \ldots & \varphi_{n}  \tag{2}\\
D \varphi_{1} & D \varphi_{2} & \ldots & D \varphi_{n} \\
\vdots & \vdots & \ddots & \vdots \\
D^{n-1} \varphi_{1} & D^{n-1} \varphi_{2} & \ldots & D^{n-1} \varphi_{n}
\end{array}\right)
\]
is called Lagutinski determinant of degree \(n\) and will denoted bellow as \(\Delta_{n}\).

So in our example
\[
\begin{aligned}
& \text { sage: lagutinski_det }(3, B) \\
& x^{\wedge} 3+x * y \wedge 2+5 * x^{\wedge} 2+y^{\wedge} 2+8 * x+4
\end{aligned}
\]8

\section*{Partial integral}

Element \(u\) from the ring \(R\) is called a partial integral, if there is an elements \(v\) from \(R\) such that
\[
D u=v \cdot u .
\]

If \(R\) is a polynomials ring, then partial integrals are well-known as Darboux polynomials.

\section*{Theorem}

If there exist an partial integral \(u\) of degree \(n\), then Lagutinski determinant of degree \(n\) is equal to zero or has \(u\) as a factor.

\section*{Partial integral}

In our example
\[
\begin{array}{ll}
\text { sage : } D(x+1) \cdot f a c t o r() & 10 \\
y *(x+1) & 11
\end{array}
\]
so \(x+1\) is Darboux polynomial of degree 3 . By the theorem under \(n>2\) all Lagutinski determinants have factor \(x+1\) :
\[
\begin{array}{ll}
\text { sage }: ~ l a g u t i n s k i \_d e t ~ & (3, B) . f a c t o r() \\
(x+1) *\left(x^{\wedge} 2+y^{\wedge} 2+4 * x+4\right) & 12 \\
\text { sage }: ~ l a g u t i n s k i \_d e t ~ & 13, B) . f a c t o r() \\
(6) * y *(x+1) *(y \wedge 2+x+2) *\left(y^{\wedge} 2+15\right. \\
2 * x+3) *\left(x^{\wedge} 2+y^{\wedge} 2+4 * x+4\right)
\end{array}
\]

The second repeating factor is also Darboux polynomial:
\[
\begin{aligned}
& \text { sage : } \left.D\left(x^{\wedge} 2+y{ }^{\wedge} 2+4 * x+4\right) . \text { factor ( }\right) \\
& (2) * y *\left(x^{\wedge} 2+y^{\wedge} 2+4 * x+4\right)
\end{aligned}
\]

\section*{Rational integral}

Rational integral of differentiation \(D\) is called a pair of elements \(u, v\) from the ring \(R\) such that
\[
u D v-v D u=0
\]

If the ring is integral, that we will write this pair as \(u / v\).

\section*{Theorem}

If one from Lagutinski determinants is equal to zero, then there exist rational integral.

\section*{Example}

For our example:
\[
\begin{array}{ll}
\text { sage: lagutinski_det }(5, B)==0 & 18 \\
\text { False } & 19 \\
\text { sage: lagutinski_det }(6, B)==0 & 20 \\
\text { True } & 21 \\
\text { sage: lagutinski_integral }(6, B) & 22 \\
\left(-54 * x^{\wedge} 2+18 * y^{\wedge} 2-72 * x\right) /(-18 * y \wedge 2-36 * x-23 \\
54) &
\end{array}
\]

Check:
```

sage: D(lagutinski_integral(6,B))24
0 25

```

The first argument in lagutinski_integral has to be equal a minimal degree of zero Lagutinski determinant.

\section*{Converse}

If there exits a rational integral \(u / v\), then there are several partial integrals of the same degree, namely
\[
u+c v \quad \forall c \in k
\]

Thus all Lagutinski determinant of big degree has several factors.

\section*{Theorem}

Let \(k\) be an infinite field and \(R\) be a ring with unique factorization of elements. If there exist rational integral, then all Lagutinski determinant of sufficiently big degree are equal to zero.

The strong assumption about \(k\) and \(R\) appears only in this theorem.

\section*{A necessary and sufficient condition for existence}

Let \(R\) be a polynomial ring over \(\mathbb{Q}\).

\section*{Theorem}
(1) A rational integral exist iff all Lagutinski determinants of sufficiently big degree are equal to zero:
\[
\exists N \in \mathbb{N}: \quad \forall n \geq N: \quad \Delta_{n}=0
\]
(2) A rational integral of degree \(N\) exist iff \(\Delta_{N}=0\).

Furthermore, if we have \(\Delta_{N}=0\), then we can calculate rational integral. But if we have
\[
\Delta_{1} \neq 0, \Delta_{2} \neq 0, \ldots, \Delta_{100} \neq 0
\]
then we can't tell that the rational integral of any degree doesn't exist.

\section*{Problem about trinomials}

Linear combination of three monomials is called a trinomial.

\section*{Problem}

For given ODE the problem consists of finding an integral which is ratio of two trinomials of degree \(N\) or smaller.

To solve this problem we need calculate a big set of Lagutinski determinants of third degree. For this purpose we can use parallel programming model in Sage.

\section*{Example}

Lagutinski_micronomial function returns the number of required trinomial in the given set \(B_{3}\) of a trinomials:
sage: R. \(\langle x, y\rangle=\) PolynomialRing (QQ, 2) ..... 26
sage: \(B=\) sorted (((1+x+y)^5).monomials(), ..... 27reverse=0)
sage: \(B 3=[[n, m, k]\) for \(n\) in \(B\) for \(m\) in \(B\) for ..... 28\(k\) in \(B\) if \((n<m<k)]\)
sage: \(D=1 a m b d a \operatorname{u}:(3 * x \wedge 4+2 * y) * x * y へ 2 * \operatorname{diff}\) ..... 29
( \(u, x\) ) + ( \(\left.5 * x^{\wedge} 4+y\right) * y \wedge 3 * d i f f(u, y)\)
sage: lagutinski_micronomial(B3) ..... 30
678 ..... 31
sage: lagutinski_integral(3, B3 [678]) ..... 32
(7*x^5 + 7*x*y)/(7*y^3) ..... 33
sage: \(D(7 * y \wedge 3 /(-7 * x \wedge 5-7 * x * y))\) ..... 34
0 ..... 35

\title{
III. A necessary condition for existence of rational integral
}

\section*{Contractor}

Let
\[
B=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}
\]
be a basis of the ring \(R\). If
\[
\psi=c_{n_{1}} \varphi_{n_{1}}+\cdots+c_{n_{m}} \varphi_{n_{m}}, \quad\left(n_{1}<n_{2}<\cdots<n_{m}\right)
\]
we say that \(c_{n_{1}} \varphi_{n_{1}}\) is a main member in \(\psi\) and write
\[
\psi=c_{n_{1}} \varphi_{n_{1}}+o\left(\varphi_{n_{1}}\right)
\]

The differentiation \(D\) is said to be a contractor with respect to the basis \(B\) if
\[
D \varphi_{n}=c_{n} \varphi_{n}+o\left(\varphi_{n}\right), \quad c_{n} \in k
\]

Constants \(c_{1}, c_{2}, \ldots\) are called contraction indexes.

\section*{A necessary condition for existence}

\section*{Lemma}

If \(D\) is contractor with respect to the basis
\[
B=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\},
\]
then
\[
\Delta_{n}=W\left(c_{1}, c_{2}, \ldots, c_{n}\right) \prod_{i=1}^{n} \varphi_{i}+o\left(\prod_{i=1}^{n} \varphi_{i}\right)
\]
where \(W\) is Vandermonde determinant.

\section*{Theorem}

Let differentiation \(D\) be a contractor. If there exists rational integral, then there aren't two equal contraction indexes:
\[
c_{i} \neq c_{j} \quad \forall i \neq j
\]

\section*{Brio et Bouquet equation}

Let the ring be \(\mathbb{C}[x, y]\). The ODE
\[
\begin{equation*}
(a y+c x+\ldots) d x+(b x+\ldots) d y=0, \quad a, b, c \in \mathbb{C} \tag{3}
\end{equation*}
\]
is well-known as Brio et Bouquet equation [Ince, n. 12.6]. Integrals of this eq. are also integrals of the contractor
\[
D=(a y+c x+\ldots) \frac{\partial}{\partial y}-(b x+\ldots) \frac{\partial}{\partial x} .
\]

\section*{Theorem}

If Brio et Bouquet equation (3) has rational integral in field \(\mathbb{C}(x, y)\), then complex numbers \(a\) and \(b\) are linear dependent over field \(\mathbb{Q}\).

\section*{Example}

\section*{General solution of LDE}
\[
(a y+c x) d x+b x d y=0
\]
is
\[
x^{a / b}\left(y+\frac{c y}{b+a}\right)=C .
\]

This integral is algebraic iff \(a / b \in \mathbb{Q}\).
Previous theorem generalizes this statements on all Brio et Bouquet equation
\[
(a y+c x+\ldots) d x+(b x+\ldots) d y=0
\]

Without any power series decompositions!

\section*{General case}

\section*{If ODE}
\[
p(x, y) d x+q(x, y) d y=0
\]
has singularity at point \((x, y)=\left(x_{0}, y_{0}\right)\), then we can lead this eq. to Brio et Bouquet equation by linear transformation. Now if we recall previous theorem we get simple necessary condition for existence of a rational integral.
This condition can check by help my lagutinski_ab function.

\section*{Example 1.}

\section*{For LDE}
\[
(x+y) d x+x d y=0
\]
we have:
\[
\begin{array}{ll}
\text { sage: x,y=var('x,y') } & 36 \\
\text { sage: lagutinski_ab }(x+y, x) & 37 \\
\text { True } & 38
\end{array}
\]

So rational integral may exist. There is
\[
y=-\frac{x}{2}+\frac{C}{x} .
\]

\section*{Example 2.}

For ODE
\[
\left(2-x^{2}-y^{2}\right) d x+(x-y) d y=0
\]
we have:
\[
\begin{array}{ll}
\text { sage: lagutinski_ab }\left(2-x^{\wedge} 2-y \wedge 2, x-y\right) & 39 \\
\text { False } & 40
\end{array}
\]

So there is no rational integral in the field \(\mathbb{C}(x, y)\).

\section*{Maple 17 (X86 64 LINUX)}
\(>\) dsolve \(\left(\left(2-x^{\wedge} 2-y(x)^{\wedge} 2\right)+(x-y(x)) * \operatorname{diff}(y(x), x)=0, y(x)\right)\); memory used=224.7MB, alloc=88.8MB, time=3.15
memory used \(=256.5 \mathrm{MB}\), alloc \(=88.8 \mathrm{MB}\), time \(=3.45\)
memory used \(=298.9 \mathrm{MB}\), alloc \(=88.8 \mathrm{MB}\), time \(=3.82\)
memory used=376.1MB, alloc=105.7MB, time=4. 60

\section*{The end.}
(C) 2016, Mikhail D. Malykh. This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported
Calculations made in SageMath Version 7.1, Release Date: 2016-03-20. See additional materials on http://malykhmd.neocities.org.```

