
Introd. Integrals of 1-3 kinds

Weierstrass Theory of Abelian Integrals and its
Realization in Sage

Malykh M.D., Sevastianov L.A.

Department of Applied Informatics and Probability, Peoples’ Friendship University
of Russia.

18 apr. 2017, ver. April 17, 2017

1 / 33



Introd. Integrals of 1-3 kinds

Abelian integrals

It is well-known, that abelian integral is an integral of the form∫
R(x, y)dx,

here R is an arbitrary rational function of the two variables x and
y related by the equation

f(x, y) = 0,

where f is an irreducible over C polynomial from Q[x, y].
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Theory of abelian integrals

Mathematicians of 19th century considered the theory of abelian
integrals as the necessary completion of mathematical analysis, but
after WWI works in this theory have died away. So Felix Klein
wrote in 1926:

Als ich studierte, galten die Abelschen Funktionen (...)
als der unbestrittene Gipfel der Mathematik, und jeder
von uns hatte den selbstverstandlichen Ehrgeiz hier selbst
weiterzukommen. Und jetzt? Die junge Generation kennt
die Abelschen Funktionen kaum mehr.
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Abelian integrals in CAS

In modern CAS there are few packages for work with abelian
integrals:

Algcurves for Maple (M. van Hoeij et all.),

Casa for Maple V (Franz Winkler et all.),

Curve generic for Sage.

Standard sources about the theory of abelian integrals for modern
authors are:

Backer, 1897; last ed. 2008 (!),

Tikhomandritsky, 1895
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Algcurves for Maple

The package Algcurves can calculate the genus of a given curve or
a basis for the linear space of differentials of the first kind.

> with(algcurves):

> f:=y^2-x^3-2*x-3;

3 2

f := -x + y - 2 x - 3

> genus(f,x,y);

1

> differentials(f,x,y);

dx

[----]

y

In other words, the genus of the given elliptic curve is equal to 1,
and the basis for the called linear space consists of one element∫
dx/y.
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Weierstrass lectures

Weierstrass didn’t publish his results after 18701, so authors of
well-known reviews on the theory of abelian integral used
incomplete students manuscripts.

Main idea.

For realization of Weierstrass ideas in CAS we have to work over Q
in contrary of ”kroneckerian” algorithms over Q.

In 2007 Carl Witty has added to Sage the user friendly realization
of the field of Algebraic Numbers (QQbar). So we wont to
illustrate Weierstrass theory by calculations in Sage.

1See biographical details in [Klein, 1926; G.I. Sinkevich, 2015].
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Hauptfunktion

Definition

If (x′, y′) is a point on this curve then there is such function
H ∈ C(x, y) that (x′, y′) is a simple pole of H and the residue at
this point is equal 1. Such function with minimal order r = 1 + p
is called a fundamental function (Hauptfunktion) and the number
p is called a genus (Rang) of curve.

Trivial statement of the existence of the fundamental function is
the unique existence theorem in Weierstass lectures.
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Hauptfunktion for elliptic curve

In many cases we can write expression for fundamental function
explicitly, so for elliptic curve

y2 = a0y
3 + a1y

2 + a2y + a3

the fundamental function is equal

1

2y′
y + y′

x− x′
.

This function has pole at (x′, y′) and at infinity, the genus is equal
to 1.
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Local uniformization

The neighborhood of any point (a, b) on an algebraic curve
f(x, y) = 0 can be described as arch or union of several arches and
each of these arches can be presented parametrically

x = a+ a′t+ . . . , y = b+ b′t+ . . . .

In Weierstrass lectures this series as xt, yt and point (a, b) as the
center of called arch or arches.
The algorithm for calculation of this series from 1st chapter of
Weierstrass lectures uses on each step solutions of univariable
algebraic equations, so we can write literal its realization in Sage
over QQbar.
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Example

At infinity we have simple pol:

1sage: var(’x,y,t,xt ,yt ,xx ,yy’)

2(x, y, t, xt , yt , xx , yy)

3sage: load(’sage/weierstrass.sage’)

4None

5sage: f= y^2-x*(x-1)*(x-2)

6sage: H= (1/2/yy)*(y+yy)/(xx -x)

7sage: L=local_parametrization(f,oo ,oo ,t,4)

8sage: H.subs([x==xt , y==yt]).subs(L[0]).

series(t,2)

9(-1/2/yy)*t^(-1) + ( -1/2/yy) + ( -1/2*xx/yy)

*t + Order(t^2)
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Duality

By analogy with Green’s function, Weierstrass considers not
H(x, y), but

H(x, y;x′, y′) · dx′.

This dual construction is a rational function with respect to (x, y)
and a differential with respect to (x′, y′).
If we known Haupfunktion for the given curve we have explicit
expressions for the abelian integrals of 1-3 kinds.
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Integrals of 3rd kind

Theorem

Expression of Hauptfunktion in Laurent series with respect to
second argument has the form

H(x, y;xt, yt)
dxt
dt

=
δ

t
+ c0 + c1t+ . . . ;

where the residue δ 6= 0 iff center of the arch coincides with (x, y)
or yet one singular point.

So expression H(x, y;x′, y′)dx′ with respect to second argument is
known in other theories as an integral of the 3rd kind (Art).
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Integrals of 3d kind for elliptic curve

Expression
y + y′

x− x′
dx′

2y′

with respect to (x′, y′) has poles at (x, y) and at infinity.

10sage: (H.subs([xx==xt , yy==yt]).subs(L[0])*

diff(xt.subs(L[0]),t)).series(t,2)

11(-1)*t^(-1) + 1 + (-x + 2)*t + Order(t^2)

So residue at infinity is equal −1.
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Integrals of 1st and 2nd kinds

Theorem

Let (a1, b1), . . . , (ap, bp) be poles of the fundamental function with
respect to first argument. Coefficients of Laurent series

H(xt, yt;x
′, y′)dx′ = Hn(x

′, y′)dx′·1
t
+c0(x

′, y′)−H ′n(x′, y′)dx′·t+. . .

for arch with center at (an, bn) give us well-known abelian integrals
of the 1st and the 2nd kinds.

This means that

Hn(xt, yt)
dxt
dt

= c0+c1t+. . . , H ′n(xt, yt)
dxt
dt

=
δ

t2
+c0+c1t+. . .

on any arch and δ 6= 0 iff center of the arch coincides with (an, bn).

14 / 33



Introd. Integrals of 1-3 kinds

Integrals of 1st and 2nd kinds for elliptic curve

For the chosen fundamental function

y + y′

x− x′
dx′

2y′

the set of poles consists from one point (∞,∞).

12sage: H.subs([x==xt , y==yt]).subs(L[0]).

series(t,2)

13(-1/2/yy)*t^(-1) + ( -1/2/yy) + ( -1/2*xx/yy)

*t + Order(t^2)

Therefore

H1(x, y)dx = −dx
2y
, H ′1(x, y)dx =

xdx

2y
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Integrals of 1st kind for elliptic curve

The differential

H1(x, y)dx = −dx
2y

has no singularities on curve. Indeed, at infinity we have

14sage: H1=-1/2/y

15sage: (H1.subs([x==xt , y==yt]).subs(L[0])*

diff(xt.subs(L[0]),t)).series(t,2)

161 + (-2)*t + Order(t^2)

At (x, y) = (0, 0)

17sage: M=local_parametrization(f,0,0,t,4)

18sage: (H1.subs([x==xt , y==yt]).subs(M[0])*

diff(xt.subs(M[0]),t)).series(t,2)

19( -1/2) + Order(t^2)
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Integrals of 2nd kind for elliptic curve

The differential

H ′1(x, y)dx =
xdx

2y

has a singularity only at infinity. Indeed, at infinity we have the
pole of 2nd degree:

20sage: HH1=x/2/y

21sage: (HH1.subs([x==xt , y==yt]).subs(L[0])*

diff(xt.subs(L[0]),t)).series(t,2)

22(-1)*t^(-2) + Order(t^2)

At (x, y) = (0, 0) there is no singularity:

23sage: (HH1.subs([x==xt , y==yt]).subs(M[0])*

diff(xt.subs(M[0]),t)).series(t,2)

24Order(t^2)
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Fundamental relation

Green’s function is symmetric and by analogy Weierstrass proves
that

d

dx1
H(x1, y1;x2, y2)−

d

dx2
H(x2, y2;x1, y1) =

=

p∑
n=1

Hn(x2, y2)H
′
n(x1, y1)−Hn(x1, y1)H

′
n(x2, y2),

This fundamental equation plays the same role in Weierstrass
theory that reduction formulas in the theory of rational integrals.
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Generalization of Ostrogradski method

For any rational function R we can write abelian integral∫
R(x, y)dx

as sum of algebraic part R′(x, y), log-part∑
m

cmH(xm, ym;x, y)dx

with log-singularities in poles of R and the 3rd part

p∑
n=1

g′n

∫
Hn(x, y)dx− gn

∫
H ′n(x, y)dx

with simple poles in fixed singularities (a1, b1), . . . , (ap, bp) of the
fundamental function.
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What we have?

This 3nd part is an elementary function iff all gn and g′n are equal
to zero. So we have at once:

decomposition of given abelian integral into integrals of three
kinds,

conditions for integrating given algebraic function in
elementary functions, and

equivalence between Weierstrass definition of genus and
commonly used definition as dimension of linear space of
homomorphic abelian integrals.
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Calculation of coefficients

In Weierstrass lectures there are explicit formulas for calculation
cm, gn, g

′
n using the coefficients of Laurent series. We will write

out these formulas in example bellow.
So Weierstrass wrote explicit formulas where modern authors
writes complicated algorithms, see [Devenport, 1985].
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Example on reduction

The differential
3x2 − 6x+ 2

y3
dx

has poles on the elliptic curve

y2 = x(x− 1)(x− 2)

at y = 0, so in three points

{(xν , yν)} = {(0, 0), (0, 1), (0, 2)}.

The set
{(aα, bα)}

reduced to one point set {(∞,∞)}.
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Coef. cm

cm =

[
R(xmt , y

m
t )
dxmt
dt

]
t−1

Residue at the first pole is equal to zero:

25sage: R=(3*x^2 - 6*x + 2)/y^3

26sage: M=local_parametrization(f,0,0,t,4)

27sage: (R.subs([x==xt , y==yt]).subs(M[0])*

diff(xt.subs(M[0]),t)).series(t,4)

282*t^(-2) + (-6)*t^2 + Order(t^4)

So c1 = 0 and, analogically, c2 = c3 = 0.
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Auxiliary coefficients

−ncm,−n =

[
R(xmt , y

m
t )
dxmt
dt

]
t−n−1

At the poles we have

29sage: (R.subs([x==xt , y==yt]).subs(M[0])*

diff(xt.subs(M[0]),t)).series(t,4)

302*t^(-2) + (-6)*t^2 + Order(t^4)

So cm,−n 6= 0 iff n = 1 and then

cm,−1 = 2.
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Coef. g1

g1 =

3∑
m=1

∑
n>0

cm,−n

[
H1(x

m
t , y

m
t )
dxmt
dt

]
tn−1

=

= 2

3∑
m=1

[
H1(x

m
t , y

m
t )
dxmt
dt

]
t0
.

At 1st pole we have

31sage: (H1.subs([x==xt , y==yt]).subs(M[0])*

diff(xt.subs(M[0]),t)).series(t,4)

32( -1/2) + ( -3/4)*t^2

so [
H(x1t , y

1
t )
dx1t
dt

]
t0
= −1

2
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Coef. g1, no. 2

At 2nd and 3rd poles we have

33sage: M1=local_parametrization(f,1,0,t,6)

34sage: M2=local_parametrization(f,2,0,t,4)

35sage: (H1.subs([x==xt , y==yt]).subs(M1[0])*

diff(xt.subs(M1[0]),t)).series(t,4)

361 + Order(t^4)

37sage: (H1.subs([x==xt , y==yt]).subs(M2[0])*

diff(xt.subs(M2[0]),t)).series(t,4)

38(-1/2) + 3/4*t^2

so

g1 = 2

(
−1

2
+ 1− 1

2

)
= 0
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Coef. g′1

g′1 =

3∑
m=1

∑
n>0

cm,−n

[
H ′1(x

m
t , y

m
t )
dxmt
dt

]
tn−1

−R(a1, b1) =

= 2

3∑
m=1

[
H ′1(x

m
t , y

m
t )
dxmt
dt

]
t0
−R(∞,∞).

For calculation of the value of the function R at infinity we have

39sage: (R.subs([x==xt , y==yt]).subs(L[0])).

series(t,4)

40Order(t^4)

So
R(∞,∞) = 0.
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Coef. g′1, no. 2

For calculation of [
H ′1(x

m
t , y

m
t )
dxmt
dt

]
t0

we have

41sage: (HH1.subs([x==xt , y==yt]).subs(M[0])*

diff(xt.subs(M[0]),t)).series(t,4)

421/4*t^2 + Order(t^4)

43sage: (HH1.subs([x==xt , y==yt]).subs(M1[0])

*diff(xt.subs(M1[0]),t)).series(t,4)

44(-1) + 1*t^2 + Order(t^4)

45sage: (HH1.subs([x==xt , y==yt]).subs(M2[0])

*diff(xt.subs(M2[0]),t)).series(t,4)

461 + ( -5/4)*t^2 + Order(t^4)

So g′1 = 2 (0− 1 + 1) = 0.
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The algebraic part

Total:
c1 = c2 = c3 = 0, g1 = g′1 = 0

Thus ∫
3x2 − 6x+ 2

y3
dx

is rational function on the curve, namely

R′ = −
3∑

m=1

∑
n>0

cm,−n

[
H(x, y;xmt , y

m
t )
dxmt
dt

]
tn−1

=

= −2
3∑

m=1

[
H(x, y;xmt , y

m
t )
dxmt
dt

]
t0
.
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Example on the reduction: the algebraic part, no. 2

For calculation of [
H(x, y;xmt , y

m
t )
dxmt
dt

]
t0

we have

47sage: (H.subs([xx==xt , yy==yt]).subs(M[0])*

diff(xt.subs(M[0]),t)).series(t,1)

48(-1/2*y/x) + Order(t)

49sage: (H.subs([xx==xt , yy==yt]).subs(M1[0])

*diff(xt.subs(M1[0]),t)).series(t,1)

50(y/(x - 1)) + Order(t)

51sage: (H.subs([xx==xt , yy==yt]).subs(M2[0])

*diff(xt.subs(M2[0]),t)).series(t,1)

52( -1/2*y/(x - 2)) + Order(t)
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Checking

By help of Weierstrass formulas we have∫
3x2 − 6x+ 2

y3
dx = −y

(
−1

x
+

2

x− 1
− 1

x− 2

)
=

2

y

In this case we can easy check the answer: from

y2 = x(x− 1)(x− 2)

follows that
2ydy = (3x2 − 6x+ 2)dx

and thus ∫
3x2 − 6x+ 2

y3
dx =

∫
−2ydy
y3

=
2

y
.
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Conclusion

The reviewed examples show that formulas from Weierstrass
lectures can be used for concrete calculations in any realization of
the field Q.
The main difficulty is search of the fundamental function for given
curve. In Weierstrass lectures there is an algorithm for this, but
even for general cubic we have complicated expression. So we wont
to simplify it in the near future.
Russian retelling of Weierstrass lectures can be found on our site
https://malykhmd.neocities.org/
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The end.
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