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Symbolic manipulation and numerical calculation

Symbolic manipulations and numerical calculations are two
opposed approaches to solution of the same problems. However,
many problems which we try to solve symbolically, in finite terms,
have arisen many centuries ago. Numerical methods of the last
centuries dictated their formulations.

Example

We study the compass-and-straightedge constructions but we
don’t use these devices in practice long ago.
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Symbolic integration of ODEs

We speak that we integrate ODE in finite terms (or in
symbolic/analytic form)

if we find the symbolic expression for the solution in
elementary functions (Liouvillean approach).

if we can describe all partial solutions of ODE as ratio of two
convergent power series (Fuchs and Painlevé approach).

Observation

The notion of symbolic integration contains anyway the reference
to the numerical methods of the past centuries.

Ref.: Malykh M.D. // Journal of Mathematical Sciences, 209:6,
2015.
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Simple illustration

Example

In 1897 Painlevé has shown that all partial solutions of ODE

d2x

dt2
= 6x2 + t (1)

now called 1st Painlevé transcendents, are described as ratio of two
convergent power series.

In the XIX century, this circumstance was very impotent
because in those days the power series were really used for the
numerical integration of the differential equations.

In the XXI century, “NIST Digital Library of Mathematical
Functions” [dlmf.nist.gov, §32.17] recommends to use
Runge-Kutta method for the numerical integration of (1).
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Our goal

Modern method for integration of the system of the differential
equations is finite differences method (FDM).

Idea

We believe that all transcendental functions can be reconsidered as
solutions of such differential equations, for which we don’t feel a
difference between exact and approximate solutions.

In the present report, we would like to consider one of the most
important class of such functions, namely, the elliptic functions.
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Jacobi elliptic functions

Jacobi elliptic functions are the solution

p = sn t, q = cn t, r = dn t

of nonlinear autonomous system
ṗ = qr,

q̇ = −pr,
ṙ = −k2pq,

with initial condition

p = 0, q = r = 1 at t = 0.

These functions can be represented everywhere as the ration of two
power series.

Ref.: dlmf.nist.gov, § 22.
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Notations

Consider the autonomous system of the differential equations

d~x

dt
= F (~x), F ∈ Q[~x],

on the interval 0 ≤ t ≤ T with the initial conditions

~x|t=0 = ~x0.

We divide the interval [0, T ] into parts with the step ∆t by points
t1, . . . tN−1 and take

t0 = 0, tN = T.

Value of approximate solution at point t = tn is designated as ~xn
and value of exact solution is designated as x(tn).
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Differential schemes

FDM suggests replacing the original system of differential
equations with algebraic equations (scheme) of the form

F (x, x̂,∆t) = 0, F ∈ Q[x, x̂,∆t]

in commonly used notations. Here and bellow the arrows over
letters are forget.
These equations defines algebraical correspondence between
neighboring layers x and x̂, which are usually investigated as points
of two affine or projective spaces.

Ref.: Samarskii A.A. The Theory of Difference Schemes. Dekker:
NY, 2001.
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Difficulties of FDM

Since the differential scheme is the system of algebraical equations,
we can conserve algebraical properties of the exact solution.
However standard explicit schemes don’t conserve algebraic
integrals of motion.

Example

System 
ṗ = qr,

q̇ = −pr,
ṙ = −k2pq,

has two quadratic integrals

p2 + q2 = const and k2p2 + r2 = const

Standard scheme of Runge-Kutta (rk4) does not conserve them.
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Total conservative differential schemes

Definition

The differential scheme

F (x, x̂,∆t) = 0 (2)

is called total conservative iff for any algebraical integral u(x) the
equation

u(x̂) = u(x)

is the consequence of the system (2).

The equality is conserved precisely if transition from a layer to a
layer becomes precisely, without rounding errors.
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The implicit midpoint rule

dx

dt
= F (x) ⇒ xn+1 − xn

∆t
=
F (xn+1) + F (xn)

2

Theorem (Cooper, 1987)

The implicit midpoint rule automatically inherits each quadratic
conservation law.

If the field of algebraical integrals of dynamic system is generated
by quadratic forms, then the implicit midpoint rule is total
conservative.
Ref.: Sanz-Serna J.M. // SIAM Review. 2016. Vol. 58, No. 1, pp.
3–33.
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The implicit midpoint rule for elliptic functions

The implicit midpoint rule for Jacobi elliptic functions give the
total conservative, but implicit differential scheme.
Yu Ying has executed a series of numerical experiments with this
scheme in Sage. We can see that

two algebraical integrals is conserved exactly,

the error of rounding isn’t a problem,

the periodical nature is conserved approximately (or exactly?).

So we don’t feel a difference between exact and approximate
solutions.
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The construction of explicit schemes

The implicit nature of the scheme is main difficulty for theoretical
investigations and also for practical computations.

Problem

Given a system of differential equations

ẋ = F (x), F ∈ Q[x],

and a few integrals, construct an explicit differential scheme,
exactly conserving the integrals of motion.

Here we give the solution for the case when the integrals of motion
specify a curve in the projective space Pr, where ~x varies.
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Example

System 
ṗ = qr,

q̇ = −pr,
ṙ = −k2pq,

has two quadratic integrals

p2 + q2 = const and k2p2 + r2 = const

These integrals specify an elliptic curve in the space pqr. All layers
coincide with this curve:

exact solution define an automorphism of this curve.

total conserve scheme also define an algebraic correspondence
on this curve.
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Elliptic case

The theory of algebraic curves give us the following.

Theorem

Any explicit total conservative difference scheme with elliptic layers
defines birational automorphism and can be written as

x̂∫
x

Hdx1 = λ(∆t).

where Hdx1 is the differential form of the first kind.
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Example

The differential form of the first kind on the curve

p2 + q2 = 1 and k2p2 + r2 = 1

is equal to
dp

qr
,

thus explicit total conservative scheme (if it exists) can be written
as

(p̂,q̂,r̂)∫
(p,q,r)

dp

qr
= λ(∆t).

Exact solution is described also as
(p̂,q̂,r̂)∫

(p,q,r)

dp

qr
= ∆t.
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Example: the difference scheme

By additions theorem for Jacobi functions we can write

(p̂,q̂,r̂)∫
(p,q,r)

dp

qr
= λ(∆t)

in the algebraical form as

p̂ =
p cnλdnλ+ snλqr

1− k2p2 sn2 λ

q̂ =
q cnλ− snλ dnλpr

1− k2p2 sn2 λ

r̂ =
r dnλ− k2 snλ cnλpq

1− k2p2 sn2 λ

Thus snλ has to be an algebraical function of ∆t and hasn’t to be
equal to sn ∆t.
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Example: approximation

The differential scheme approximates the differential equations
with degree k iff

λ = ∆t+O(∆tk+1)

or
snλ = [sn ∆t]k +O(∆tk+1),

where [. . . ]k designates the Taylor polynomial of degree k.
In particular, for k = 1

snλ = ∆t, cnλ =
√

1−∆t2, dnλ =
√

1− k2∆t2

This differential scheme gives us exactly Gudermann’s method for
calculation of elliptic functions [Weierstrass, Bd. 1, Art. 1].
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Is it a differential scheme?

Gudermann scheme for calculation of elliptic function

p̂ =
p
√

1−∆t2
√

1− k2∆t2 + ∆tqr

1− k2p2∆t2

q̂ =
q
√

1−∆t2 −∆t
√

1− k2∆t2pr
1− k2p2∆t2

r̂ =
r
√

1− k2∆t2 − k2∆t
√

1−∆t2pq

1− k2p2∆t2

is almost differential scheme, but

its equations contain the radicals with respect to ∆t,

it is defined only on one layer

p2 + q2 = 1 and k2p2 + r2 = 1,

not at all points of the space pqr.
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Partial differential scheme

By analogy with notion of a partial solution of ODE we will accept
the following.

Definition

Let (m, m̂)-correspondence be defined on a variety V enclosed in
the protective space Pr. If a point x ∈ V correspondent one value
x̂, which can be described by Puisex series

x̂ = x+ f(x)∆t+ . . . ,

then we can call that this correspondence is a partial differential
scheme of type (m, m̂) approximating the ODE ẋ = f(x).

The variety V is called a layer, the dimension of V ⊂ Pr is called a
dimension of the scheme and so on.

22 / 31



Motivation FDM Explicit schemes Supplement

Classification of partial explicit schemes

The theory of algebraic correspondences [Zeuthen, 1914] gives the
following.

Theorem

There are only two types of partial explicit schemes of dimension 1:

schemes with layers of genus 0,

schemes with layers of genus 1

All schemes with layers of genus 1 can be described by means of
Abelian integral of the first kind. Thus all of them are birational
(m = m̂ = 1).
Gudermann scheme for elliptic function is a typical example of
partial differential scheme with layers of genus 1.
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Existence of total conservative explicit schemes

Any total conservative scheme is made of partial differential
schemes.

Theorem

If the integrals of motion specify a curve of the genus ρ > 0 in the
space Pr, then total conservative explicit schemes does not exist.

In general, the curve of degree equal or more than 3 has genus
ρ > 0, thus there aren’t total conservative explicit schemes by
purely geometric reasons.
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What is elliptic functions?

Deduction

The autonomous system of ODEs, integrated in the elliptic
functions, plays an especial role not only in the analytical theories,
but also in FDM.

For this system we can write the excellent differential schemes:

implicit total conservative (5, 5)-scheme, defined on all
projective space pqr,

explicit partial schemes, defined on the elliptic curves

p2 + q2 = C1 and k2p2 + r2 = C2.

In general, the autonomous system with algebraical integrals can’t
be approximated by such differential schemes.
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The end.

c© 2018, Mikhail D. Malykh. This work is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported
Calculations made in SageMath version 7.5.1, Release Date: 2017-01-15.
See additional materials on http://malykhmd.neocities.org.
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Total periodic schemes

Approximate solution calculated by conservative differential scheme
can be exactly periodic.

Definition

A partial differential scheme is called total periodic if there is the
sequence {

∆tn ∈ Q
}

such that xn = x0, where {xm} is the approximate solution at
∆t = ∆tn.

Here n is the number of points per period and n∆tn is the period
of the approximate solution.

Theorem

If n∆tn → T , than the number T is the period of the exact
solution.
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The periodicity of our scheme

For Gudermann scheme we have

xn = x0 ⇒ nλ =

x0∫
x0

dp

qr
= 4K.

For scheme of 1st degree

snλ = ∆t.

Thus

∆tn = sn
4K

n
∈ Q

and therefore our scheme is total periodic.
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sn
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We have calculated ∆tn at n = 2s by formulas of a half corner.
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The periodicity of our scheme

Approximate period is equal to

n∆tn = n sn
4K

n
= 4K − k2 + 1

6

43K3

n2
+O

(
1

n4

)
Thus our difference scheme conserve exact the periodical nature of
motion but we calculate the value of the period with small error

k2 + 1

6

43K3

n2
.
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The total end.

c© 2018, Mikhail D. Malykh. This work is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported
Calculations made in SageMath version 7.5.1, Release Date: 2017-01-15.
See additional materials on http://malykhmd.neocities.org.
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