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Dynamic systems

One of the main continuous models is a dynamic system described
by an autonomous system of ordinary differential equations, that is,
a system of equations of the form

dxi
dt

= fi(x1, . . . , xm), i = 1, 2, . . .m, (1)

where t is an independent variable commonly interpreted as time,
x1, . . . , xm are the coordinates of a moving point or several points.
In practice, the right-hand sides fi are often rational or algebraic
functions of coordinates x1, . . . , xm or can be reduced to such form
by a certain change of variables.
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Finite difference method

Within the framework of the finite difference method the system of
differential equations is replaced with the system of algebraic
equations

gi(x, x̂,∆t) = 0, i = 1, . . . ,m. (2)

In this case, x is interpreted as the value of the solution at the time
t, and x̂ as the solution at the time t+ ∆t.

Example

Euler scheme x̂− x = f(x)∆t,
midpoint scheme x̂− x = f

(
x̂+x
2

)
∆t,

trapezoid scheme x̂− x = f(x̂)+f(x)
2 ∆t, ...
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Newton’s equations as difference equations

In the course of searching for numerical methods for integrating
dynamical systems, a very interesting construction was found — a
difference scheme of a dynamical system that preserves all algebraic
integrals of motion.
Attempts have been made for a long time to consider Newton’s
equations as difference equations:

m
d2x

dt2
= F (x) → m

∆2x

∆t2
= F (x).

See, for ex., [Feynman, ch. 2, §3].
However with the standard discretization such a representation
faces a violation of the fundamental conservation laws.
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Difference model of the dynamical system

The scheme is a difference model of the dynamical system, if
1 the schema has same discrete symmetries as the original

problem, including t-symmetry

dt→ −dt, x→ x̂, x̂→ x

and bodies permutations in many body problem.
2 the schema preserves all algebraic integral in some sense, for

ex., like
g(x) = const → g(x̂) = g(x)

3 approximate solution inherits qualitative properties of exact
solution like periodicity.

Euler scheme does not inherit any properties of the initial
differential problem.
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Midpoint scheme vs. trapezoid scheme

For ode ẋ = f(x) there are two schemes with t-symmetry:
midpoint scheme

x̂− x = f

(
x̂+ x

2

)
∆t

trapezoid scheme

x̂− x =
f(x̂) + f(x)

2
∆t.

The midpoint scheme is the simplest from trapezoid schemes.

Theorem (Cooper, 1989)

The midpoint scheme preserves linear and quadratic integrals.
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Principle of duality

Let x0, x1, x2, . . . be approximate
solution calculated by midpoint
scheme. Then midpoints
x′0, x

′
1, x
′
2, . . . of segments of

broken line x0x1x2 . . . are
approximate solution calculated
by symmetric scheme.

Theorem (Yu Ying et al., DCM & ACS, 2021)

Trapezoid scheme inherits linear and quadratic integrals of the
dynamical system, difference analogue for the integral g(x) will be

g

(
x− f(x)

dt

2

)
.
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Ex. Linear oscillator

The linear oscillator
ẋ = −y, ẏ = x

has an integral x2 + y2 = const. Midpoint solution
(x0, y0), (x1, y1), . . . is a broken line, its vertexes lie at circle with
radius R. Dual trapezoid solution (x′0, y

′
0), (x

′
1, y
′
1), . . . is a broken

line, its vertexes lie at circle with radius r. They will be right
polygon iff

r/R = cos
π

N
, N ∈ N.

This approximate solution is periodic sequence with period N iff
the step ∆t is a root of the equation

1 + dt2/4 = cos2
π

N
, N ∈ N.

See: [Gerdt V.P. et al., DCM & ACS, 2019]
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Ex. Jacobi oscillator

The dynamical system

ṗ = qr, q̇ = −pr, ṙ = −k2pq,

integrable in terms of elliptic Jacobi functions and has two
quadratic integrals.

1 The midpoint scheme preserves the quadratic integrals exactly.
2 The trapezoid scheme preserves the quadratic integrals, but

the integral
p2 + q2 = const

turning into the polynomial

(p2 + q2)

(
1 +

r2dt2

4

)
.
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Usage for numerical integration

Against use of conservative schemes for numerical integration, two
fundamental considerations come to mind:

In the case of non-integrable systems, while remaining on the
integral manifold, we can decline far from the exact solution.
Thus conservation laws cease to be indexers of error but it is
not guarantee of success.
All conservative schemes are implicit thus at any step we have
to solve a system of nonlinear algebraic equations. This is hard
job, thus the methods is not effective.

Note
Buono and Mastroserio in 2002 proposed a construction which
looks like explicit RK scheme and preserves integrals. Although it is
not even difference scheme, this method is very effective for
numerical integration. See: [Zhang, 2020].
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One step of midpoint scheme (theory)

Input: 1.) right-hand sides of equations f , 2.) initial conditions,
3.) list of quadratic integrals g1, . . . , gr, 4.) time step dt.
Output: values of x1, . . . xn at the moment of time, differing from
the initial one by dt.
In theory we have to solve the system of nonlinear equations

x̂ = x+ f

(
x̂+ x

2

)
dt.

We try to solve it in CAS analytically, but this system is reduced to
equation of the 5th degree in the simplest nonlinear case of elliptic
oscillator. Thus we will use iterative numerical method to solve this
system.
See: [Gerdt V.P. et al., DCM & ACS, 2019]
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Many body problem

Question
How we can construct various such conservative difference schemes
for the most famous family of dynamical systems, the many-body
problem?

The classical problem of n bodies consists in finding solutions to an
autonomous system of ordinary differential equations

mi~̈ri =

n∑
j=1

γ
mimj

r3ij
(~rj − ~ri) , i = 1, . . . , n (3)

Here ~ri is the radius vector of the i-th body, mi is its masses, rij is
the distance between the i-th and j-th bodies, and γ is the
gravitational constant.
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Algebraic integrals

Bruns [Whittaker, § 164] proved that every algebraic integral of
motion in this system is expressed algebraically in terms of the 10
classical integrals.
The energy

n∑
i=1

mi

2
|~vi|2 − γ

∑
i,j

mimj

rij

is not quadratic function thus midpoint scheme does not preserve
energy integral.
The first finite-difference scheme for the many-body problem,
preserving all classical integrals of motion, was proposed in 1992 by
Greenspan and independently in somewhat different form by Simo
and González.
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Our idea

The simplest way to construct conservative schemes is to introduce
additional variables with respect to which all algebraic integrals of
the many-body problem are expressed in terms of linear and
quadratic integrals.
The beginning of our study was laid by the description of a
regularizing transformation, which was proposed by Burdet and
Heggie, in the book by Marchal.
In other hand, the introduction of additional variables in the
construction of difference schemes is known as the scalar auxiliary
variable approach (SAV), proposed by Jie Shen et al.
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System with quadratic polynomial integrals

Theorem
The system

~̇ri = ~vi, mi~̇vi =

n∑
j=1

γ
mimjρij
r2ij

(~rj − ~ri) , i = 1, . . . , n

ṙij =
1

rij
(~ri − ~rj) · (~vi − ~vj), i, j = 1, . . . , n; i 6= j

ρ̇ij = −ρij
r2ij

(~ri − ~rj) · (~vi − ~vj), i, j = 1, . . . , n; i 6= j

has 10 classical integrals, which are linear or quadratic with respect
new variables, and the additional integrals rijρij = const and

r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = const.
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Conservative schemes for N body problem

Since all classical integrals of the many-body problem, as well as
the additional integrals, are quadratic in their variables, any
symplectic Runge-Kutta difference scheme, including the simplest
midpoint one, preserves all these integrals.
The midpoint scheme written for the system with additional
variables, preserves all its algebraic integrals exactly and is invariant
under permutations of bodies and time reversal.
It is not difficult to create high-order schemes which preserve all
integrals of motion in the many-body problem, which is one of
major advantages of the proposed approach to constructing
conservative difference schemes.
Proofs of Ths. see in: Gerdt V.P. et al. // ArXiv. 2007.01170.



On difference schemes that inherit algebraic properties of dynamical systems
Many body problem

Computer experiments with plane three-body problem

We wrote our implementation of the midpoint method in CAS Sage
and applied it to the study of the dimensionless problem of the
motion of three bodies of equal mass with mi = γ = 1 on a plane.
We compared three methods to solve the problem:

1 the explicit Runge-Kutta method (standard method), which
does not preserve the integrals of motion,

2 the midpoint method written to the system without
introducing additional variables, which preserve all quadratic
integrals,

3 the midpoint method written to the system with introducing
additional variables, which preserve all integrals.
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Test problem

Initial condition

x1 = 0, x2 = 1, x3 = 2,

y1 = 0, y2 = 0, y3 = 0

and

u1 = 0, u2 = 1, u3 = 1,

v1 = 0, v2 = 1, v3 = 2.

General description: two
bodies move nearby, forming
cuspids and small loops. 2 4 6 8

x

2

4

6

8

10

y
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Test problem: rk4 vs. our method

0 2 4 6 8 10
t

0.85

0.9

0.95

1
H

The energy does not preserve, although rk4 method describe loops
on trajectories correctly.
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Reversibility

Definition
By reversibility, we should understand the possibility to uniquely
determine the final data x̂ from the initial data x and vice versa
using the system

gi(x, x̂,∆t) = 0, i = 1, . . . ,m,

for any fixed value of the step ∆t.

Since gi are polynomials, this means that x̂ must be a rational
function of x, and x must be a rational function of x̂.

Example

Euler scheme x̂− x = f(x)∆t written for linear dynamical system
is reversible.
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Cremona transformations

We will consider x, x̂ as two points of the projective space Pm and
say that the difference scheme

gi(x, x̂,∆t) = 0, i = 1, . . . , n,

is invertible if for any fixed value of ∆t this scheme defines a
Cremona transformation.
The combination of t-symmetry and reversibility means that the
difference scheme defines a one-parameter family of Cremona
transformations C, such that

x̂ = C(∆t)x

and
C(∆t)−1 = C(−∆t).
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Reversibility in mechanics

Let us consider the following Painlevé initial problem

dx

dt
= f(x), x|t=t0 = x0 (4)

on the segment [t0, t0 + ∆t] of the real axis t.
For some values of t0, the procedure for analytic continuation of
the solution obtained in the Cauchy theorem along a segment does
not encounter singular points other than poles, and in this case the
final value of x(t0 + ∆t) is uniquely determined by the initial value
of x0. However, if the path encounters a branch point, then the
final value depends on the way it is passed. Therefore, x(t0 + ∆t)
is a multivalued function of the initial value x0.
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Painlevé property

If a dynamical system has the global reversibility property, then it
also has the Painlevé property.

Definition
A dynamical system has the Painlevé property, if the singular points
of the solution are not branch points.

Example
Classical completely integrable models, including pendulums and
tops, are integrable in elliptic functions and, as can be seen from
the solution, have the Painlevé property.
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One-dimensional case

In the one-dimensional case (n = 1), only the Riccati equation has
the Painlevé property

dx

dt
= a+ bx+ cx2 (5)

for any, including zero values of constants a, b, c. Moreover, the
initial problem defines a Möbius transformation on the projective
line.
It is not difficult to construct a difference scheme that inherits this
property:

x̂− x =

(
a+ b

x+ x̂

2
+ cxx̂

)
∆t (6)



On difference schemes that inherit algebraic properties of dynamical systems
Equations with quadratic right-hand side

Riccati equation

Since any birational transformation on a projective line is a Möbius
one, it is easy to prove the converse.

Theorem (Malikh M.D., 2019)

In the one-dimensional case, an invertible difference scheme can be
constructed only for the Riccati equation

Ref.: E. A. Ayryan et al. On Difference Schemes Approximating
First-Order Differential Equations and Defining a Projective
Correspondence Between Layers. Journal of Mathematical Sciences
240 (2019), 634–645. DOI: 10.1007/s10958-019-04380-0
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Many dimensional case

For n > 1, the continuous and discrete case lose their similarity.

1 For any dynamical system with a quadratic right-hand side, a
t-symmetric reversible difference scheme can be constructed:

x̂i − xi = Fi(x, x̂)∆t, i = 1, . . . , n, (7)

where Fi is obtained from fi by replacing monomials: xj with
(x̂j + xj)/2, xjxk with (x̂j + xj)(x̂k + xk)/4, and x2j with
xj x̂j .

2 Only a few dynamical systems with a quadratic right-hand side
possess the Painlevé property.
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Systems with a quadratic right-hand side

The dynamical system describing the rotation of a rigid body
around a fixed point always has a quadratic right-hand side and has
the Painlevé property only in 4 special cases found by
S.V. Kovalevskaya.

Theorem (Appelroth, 1911)

Any dynamical system can be reduced algebraically to a system
with a quadratic right-hand side.

There are effective algorithms for monomial quadratization for ODE
systems [Bychkov A., Pogudin G., 2020].
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Periodicity of approximate solutions

The approximate solution is a sequence x0, x1, . . . , each next
element of which is obtained from the previous one by applying the
Cremona transformation C:

xx+1 = Cxn

This sequence will have period n, if xn = x0, i.e., if x0 is a fixed
point of Cn.
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Calculation of the step when a period and an initial value
are given

Problem
Let a positive integer n and an initial value x0 ∈ Qm be given. We
want to calculate the step ∆t at which the sequence has a period n.

Considering ∆t as a symbolic variable, we calculate Cnx0. We get
m rational functions from Q(dt). Equating them to x0, we obtain
m of algebraic equations, the common roots of which are the
required step values.
Generally speaking, several equations for one variable may not have
common roots, but they have common roots in all our examples.
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Examples

We have considered three examples:
1 a linear oscillator that can be easily investigated analytically,
2 ℘-oscillator

ẋ = y, ẏ = 6x2 − a, (8)

which is integrable in terms of Weierstrass elliptic functions.
3 Jacobi oscillator, i.e., dynamical system

ṗ = qr, q̇ = −pr, ṙ = −k2pq, (9)

which is integrable in terms of elliptic Jacobi functions.
We chose different initial data and considered n in the interval from
2 to 10. The degrees of polynomials, the common roots of which
give the desired step values, increase exponentially with n, which
significantly limited our ability to increase n.
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Example 2. ℘-oscillator

For the ℘-oscillator with a = 1
2

under the initial conditions
(x0, y0) = (1, 2), there are no
values of step ∆t for which the
solution has a period n = 2, 3, 6.
For n = 4 the step is independent
of the starting point. The table
contains all the matched positive
values for ∆t found for n in the
top ten.

n ∆t

2 ∅
3 ∅
4 1.074
5 6.908
6 ∅
7 0.556, 5.870, 7.759
8 0.535, 1.074, 6.843
9 0.504, 9.187
10 0.471, 0.559, 6.777, 6.908
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Example 3. Jacobi oscillator

For the Jacobi oscillator with
k = 1

5 under the initial conditions

p = 0, q = 1, r = 0,

there are positive values of step
∆t for any periods n > 2.

n ∆t

2 ∅
3 3.609
4 2.041
5 1.47, 6.86
6 1.17, 3.60
7 0.97, 2.57, 10.85
8 0.83, 2.04, 5.18
9 0.73, 1.70, 3.60, 16.23
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Example 3. Jacobi oscillator, n = 5

-1 -0.5 0 0.5 1
p

-1

-0.5

0

0.5

1

q

-1 -0.5 0 0.5 1
p

-1

-0.5

0

0.5

1

q

Approximate solution has the period n = 5 at two values of the
step. In the plane pq, at the first value of the step, an almost
regular pentagon is obtained and at the second value we obtain a
pentagram.



On difference schemes that inherit algebraic properties of dynamical systems
Equations with quadratic right-hand side

Example 3. Jacobi oscillator, n = 6

-1 -0.5 0 0.5 1
p

-1

-0.5

0

0.5

1

q
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q

Approximate solution has the period n = 6 at two values of the
step. First of them is coincide with the step at n = 3 and give us a
triangle, the second give a hexagon.
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Example 3. Jacobi oscillator, n = 7
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Approximate solution has the period n = 7 at three values of the
step.
In all cases, the integral of motion p2 + q2 = 1 is not exactly
conserved.
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Example 3. Jacobi oscillator, n→∞

As n grows, the number of step values at
which periodic approximations to the solution
of the Cauchy problem are obtained grows.
The smallest possible ∆t for fixed n
corresponds to an almost regular n-gon in the
pq plane.
These solutions revert to their original value in
times n∆t, collected in Table. These times
seem to form a monotonically decreasing
sequence converging to the exact period.

n n∆t

3 10.827
4 8.164
5 7.379
6 7.022
7 6.827
8 6.706
9 6.627
∞ 6.347
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Results of computer experiments

It is convenient to present the results of the experiments carried out
in the form of two hypotheses:

1 for any sufficiently large n and any initial conditions, one can
specify a finite number of positive values for the step ∆t, at
which periodic sequences with the period n are obtained,

2 if we associate each n with a minimum period, we get a
sequence converging to the period of the exact solution for
n→∞.

By virtue of the first hypothesis, any exact particular solution can
be approximated by an approximate solution that inherits the
periodic nature of the exact solution, and by virtue of the second
hypothesis the approximation step ∆t can be taken arbitrarily small
and, therefore, approach the exact solution with any given accuracy.
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Equiperiodic sets

In the previous Section, we followed one solution, but changed ∆t.
Let us now look at the behavior of solutions in the phase space, but
for a fixed ∆t.

Definition
The set in the phase space formed by all the initial data generating
approximate solutions with the same period n is algebraic; we will
call it an equiperiodic set of the n-th order.

The equiperiodic set E is an invariant set for difference model:

x ∈ E ⇒ x̂ ∈ E.

It is easy to deduce from the first hypothesis that equiperiodic sets
of sufficiently large order are not empty and have codimension 1.
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Calculation of equiperiodic sets

Problem
Let a positive integer n and a step ∆t be given. We want to
calculate the equations described the equiperiodic set of the n-th
order.

To find it in the previous algorithm, it is necessary to consider x0 as
a tuple of m symbolic variables. We managed to find these sets
only for small n.
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Example. ℘-oscillator with a = 1
2

At n = 2 and 3 the equiperiodic sets are empty.
At n = 4 the curve equation degenerates into

3∆t4 − 4 = 0,

thus the step is independent of the initial data.
At n = 5 the equiperiodic set appears to be an elliptic curve

27∆t10x− 432∆t8xy2 + 432∆t8x2 + 1728∆t6x3 + 27∆t8

−432∆t6y2 − 936∆t6x+ 168dt4 + 240∆t2x− 80 = 0.
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Degrees of the equiperiodic curves

The degrees of Fn ∈ Q[∆t][x, y] are presented
in the table.
Due to the degree grows , the equiperiodic
curves do not belong to the same sheaf, linear
or irrational.

n Degre of Fn

4 0
5 3
6 3
7 6
8 6
9 9
10 12
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℘-oscillator. Phase diagram, ∆t = 1

Points of approximate solutions
generated by the initial values
belonging to the square
[−1, 1]× [−1, 1] with space step
d = 1/5, colored in HUE, and
equiperiodic curves (F5 in black,
F6 in red, F7 in blue, F8 in
green).
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℘-oscillator. Phase diagram, ∆t = 1
2

Points of approximate solutions
generated by the initial values
belonging to the square
[−1, 1]× [−1, 1] with space step
d = 1/5, colored in HUE, and
equiperiodic curves (F5 in black,
F6 in red, F7 in blue, F8 in
green).
It is well seen that most of the
diagram points group around
these curves.
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℘-oscillator. Phase diagram, ∆t = 0.471 . . .

When ∆t = 0.471 . . . , the
approximate solution of the initial
problem with the condition

x = 1, y = 2

has the period n = 10. Thus the
trajectory on xy plane consists
from 10 points.
If we perturb the initial condition
and take

x = 1.0001, y = 2,

then the trajectory is infinite set
of the points.

-3 -2 -1 1 2 3
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-3

-2

-1

1

2

3

y

These points lie on a curve which
repeat the form of F10. Is this
curve algebraic?
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Differential vs. difference models

Differential model

ẋ = f(x)

has
1 periodic solutions
x(t+ T ) = x(t),

2 algebraic integral, i.e. there
is a linear invariant sheaf

g(x) + ch(x) = 0,

3 the model define a birational
transformation on integral
manifold

Difference model

F (x̂, x,∆t) = 0

with fixed step ∆t has
1 sequence of equiperiodic sets
F3, F4, . . . ,

2 they are invariant sets for
dynamical system, but they
don’t form a linear or
irrational sheaf.

3 the model define Cremona
transformation.
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Invertibility vs. exact preservation of all algebraic
integrals

The our ultimate goal is to create discrete models that have the
most important properties of mechanical models. These include
undoubtedly the inheritance of algebraic conservation laws,
t-symmetry, reversibility and periodicity.
It is impossible to combine reversibility and exact preservation of all
algebraic integrals.

Ref. E. A. Ayryan et al. On Explicit Difference Schemes for
Autonomous Systems of Differential Equations on Manifolds.
Lecture Notes in Computer Science 11661 (2019), 343–361. DOI:
10.1007/978- 3-030-26831-2_23.
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Cremona transformation vs. birational transformation on
an integral manifold

The starting point for this article was the observation that
dynamical systems with a quadratic right-hand side can be
approximated by reversible difference schemes with t-symmetry.
The approximate solutions found using these schemes are birational
functions of the initial data over the entire phase space. This is
surprising since in the continuous case, for this property to appear,
one had to restrict the phase space by an algebraic integral
manifold.
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Historical remark

Hermite believed that the theory of birational transformations of
curves would be a section in the theory of the Cremona group,
which F. Klein considered an annoying mistake, which he
considered necessary to describe in detail in his Lectures on the
History of Mathematics.
Now it turns out that Hermite was right after all, and there is a
connection between birational transformations on curves and
Cremona transformations, which manifests itself in the
discretization of dynamical systems.
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Results presented in the talk

1 Midpoint scheme and duality to it trapezoid scheme inherit
linear and quadratic integrals of the dynamical system. To
construct such schemes with non-quadratic integrals (including
many-body problem) we can introduce additional variables
with respect to which all algebraic integrals are expressed in
terms of linear and quadratic integrals. However these schemes
aren’t reversible.

2 The systems with quadratic right-hand site can be
approximates be reversible schemes, preserved algebraic
integrals and periodicity in described above general sense.
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The End

c© 2021, Mikhail Malikh et al. Creative Commons Attribution-Share Alike 3.0
Unported.
Additional materials: https://malykhmd.neocities.org

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://malykhmd.neocities.org

