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We consider eigenvalues embedded in the continuous spectrum of the eigenvalue

problem for a filled waveguide. A criterion for the existence of an infinite sequence

of eigenvalues is stated for insertion-type fillings. The eigenvalues embedded in the

continuous spectrum are shown to disappear under a small real perturbation of the

filling.

Although there are examples of waveguide systems possessing eigenval-

ues embedded in a continuous spectrum, the necessary conditions for the

emergence of embedded modes remain unclear. As noted in [1], it is thus

reasonable to examine whether or not these modes persist under small per-

turbations of parameters in waveguide systems possessing trapped modes.

In a waveguide Ω =
{
x ∈ R1, y ∈ S

}
, with the section S being a simply

connected finite region in R1 or R2, we consider the eigenvalue problem
∆u+ eq(x, y)u = 0 (x, y) ∈ Ω,

u|∂Ω = 0,

u ∈
o

W 1
2(Ω).

(1)
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Here, q(x, y) characterizes the filling of the waveguide. We assume that the

waveguide filling is locally irregular; i.e., q(x, y) is a piecewise continuous

function and Supp [q(x, y)− 1] ≡ Ω′ is a finite region. It is also assumed that

there is no damping in the waveguide; i.e., q is a real function.

A widespread practical case is a hollow waveguide Ω filled with a homoge-

neous substance with q = 1 and containing one or several plates with different

q 6= 1 located perpendicularly to the waveguide axis; i.e., q(x, y) is a piecewise

continuous function of the single variable x. In this case, we can prove the

existence of an infinite sequence of eigenvalues in problem (1). More exactly,

the following result is valid.

Theorem 1. Let α2
n be the eigenvalues of the Dirichlet problem on S and

ψn be the corresponding eigenfunctions. If 1 ≤ q0(x) ≤ Q, then, for any

n = 1, 2, . . . , the problem
∆u+ eq0(x)u = 0 (x, y) ∈ Ω,

u|∂Ω = 0,

u ∈
o

W 1
2(Ω)

(2)

has an eigenvalue e(n) on the interval (α
2
n

Q , α
2
n) that is associated with an

eigenfunction of the form un(x)ψn(y)

Remark. The existence of an infinite sequence of eigenvalues for a waveguide

with an insertion-type filling was indicated in [2]. In [3], the above estimates

were obtained, and eigenvalues were calculated for various insertion-type fill-

ings.

This theorem means, in particular, that for sufficiently small q − 1, even

the eigenvalue e(2) of problem (2) is greater than α2
1; therefore, the waveguide

has an eigenfunction of the form u0(x, y) = u2(x)ψ2(y) associated with the

eigenvalue e(2) > α2
1, i.e., an eigenvalue embedded in a continuous spectrum.

Let us now find out whether or not this eigenvalue is preserved if the filling

is perturbed so that

q(x, y) = q0(x) + εq1(x, y),
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where q1 is a real function and ε characterizes the smallness of the perturba-

tion.

It was shown in [4] that no more than one eigenvalue e(ε) of the perturbed

problem (1) exists in a sufficiently small neighborhood of a simple eigenvalue

e0 of the unperturbed problem (2). Moreover, if the former eigenvalue exists,

then it and the corresponding eigenfunction u(x, y; ε) are analytic functions

of ε and are regular at zero.

To prove this statement, we use the resolvent of the regular waveguide.

Its explicit expression is given by

R0(e)v =
∞∑
n=1

i

2
√
e− α2

n

∫
Ω

dξdηei
√
e−α2

n|x−ξ|ψn(η)ψn(y) v(ξ, η)

and it maps L2(Ω′) to
o

W 1
2, loc(Ω). The substitution u = R0(e)v made in (1)

gives an integral equation for v:

v − A(e, ε)v = 0, where A(e, ε) = −e(q(x, y; ε)− 1)R0(e). (3)

Since Supp q− 1 is bounded, A(e, ε) is a compact operator function holomor-

phic on a Riemann surface f with branch points at α2
n. This procedure for

reducing the original problem to an integral equation is a modification of the

procedure suggested in [5]; however, the former is easier to justify for weak

solutions.

It was shown in [4] that the set of eigenvalues of A(e, ε) that lie on the

principal sheet (where all roots
√
e− α2

n have principal values) coincides with

the set of all eigenvalues of problem (1). If A has a simple eigenvalue e0 for

q = q0, then, in a sufficiently small neighborhood of that eigenvalue, there

exists a unique eigenvalue e(ε) depending analytically on ε.

If e0 is an isolated simple eigenvalue of problem (2), then e0 is a simple

eigenvalue of A(e, 0) lying inside the principal sheet. Consequently, a unique

eigenvalue e(ε) of A(e, ε) lies in a sufficiently small neighborhood of e0. Since

the small neighborhood of e0 lies on the principal sheet, e(ε) is a unique
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perturbed eigenvalue of problem (1) with a perturbed filling, and it tends to

e0 as ε −→ 0.

However, if e0 is an eigenvalue embedded in the continuous spectrum of

problem (2), then e0 is an eigenvalue of A(e, 0) lying on the boundary of the

principal sheet. Therefore, although a single eigenvalue e(ε) of A(e, ε) lies

in a sufficiently small neighborhood of e0, this eigenvalue may not lie on the

principal sheet and, hence, may not be an eigenvalue of problem (1) with a

perturbed filling. This means that there exists no more than one eigenvalue

of (1) that tends to e0 as ε −→ 0. Moreover, if such an eigenvalue exists, it

coincides with the corresponding eigenvalue of A(e, ε) and, hence, depends

analytically on ε, as stated above.

Now, we assume that an eigenvalue of the perturbed problem (1) exists

in a neighborhood of e0 e
(2) for any q1(x, y). Then, this eigenvalue and the

corresponding eigenfunction can be represented as series expansions:

e(ε) = e0 + e1ε+ . . . , u(x, y; ε) = u2(x)ψ2(y) + εu1(x, y) + . . . .

Multiplying (1) by ψ1(y) and integrating the result over the entire section S,

we obtain

d2

dx2

∫
S

dyu(x, y)ψ1(y) + e

∫
S

dy q(x, y)u(x, y)ψ1(y) = α2
1

∫
S

dyu(x, y)ψ1(y).

Substituting the series expansions of e(ε) and u(ε) into this equation and

introducing ∫
S

dyu(x, y)1ψ1(y) = u1,1(x),

we obtain, up to the first perturbation order,

d2u1,1

dx2 + [e0q0(x)− α2
1]u1,1 = e0u2(x)

∫
S

dy q1(x, y)ψ1(y)ψ2(y).

For u(x, y; ε) to belong to L2, it is necessary that u1,1(x) be in L2(R1). Since

the support of the perturbed filling q(x, y)− 1 is bounded, this equation has

a solution in L2 only under rather special conditions on q1(x, y). Thus, we

have proved the following statement (cf. [6]).
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Theorem 2. There exist piecewise continuous real perturbations q1(x, y) of

the initial filling q0(x) such that there are no perturbed eigenvalues in the

neighborhood of the unperturbed eigenvalue.

Moreover, it can be seen from the proof that the eigenvalue e0 = e(2)

corresponding to the eigenfunction u0(x, y) = u2(x)ψ2(y) is stable only with

respect to those perturbations for which the equation

d2w

dx2 + [e0q0(x)− α2
1]w = e0u2(x)

∫
S

dy q1(x, y)ψ1(y)ψ2(y) (4)

has a solution in L2(R1).

The simplest example illustrating this statement is the case where

Ω = {x ∈ R1, y ∈ [0, +π]}, Ω′ = {x ∈ [−1, 1], y ∈ [0, +π]}

and

q0 (x) =

{
q0, x ∈ (−1,+1)

1, otherwise
.

It is easy to show that the smallest eigenvalue corresponding to eigenfunctions

of the form u2(x)ψ2(x) then disappears under a perturbation of the form

q1(x, y) =

{
ψ2(y)
ψ1(y)

sin
√
e0q0 − α2

1(x± 1) cos
√
α2

2 − e0q0x, |x| < 1

1, otherwise
(5)

if this eigenvalue is embedded in a continuous spectrum.

The basic meaning of the theorem proved is that eigenvalues embedded in

a continuous spectrum are unstable with respect to small perturbations of the

waveguide filling. This property is rather unexpected, because an eigenvalue

usually disappears only under a complex-valued perturbation of the filling,

i.e., after the introduction of damping.
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