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ON TRANSCENDENTAL FUNCTIONS ARISING FROM
INTEGRATING DIFFERENTIAL EQUATIONS IN FINITE
TERMS

M. D. Malykh∗ UDC 517.9

In this paper, we discuss a version of Galois theory for systems of ordinary differential equations
in which there is no fixed list of allowed transcendental operations. We prove a theorem saying
that the field of integrals of a system of differential equations is equivalent to the field of ratio-
nal functions on a hypersurface having a continuous group of birational automorphisms whose
dimension coincides with the number of algebraically independent transcendentals introduced by
integrating the system.

The suggested construction is a development of the algebraic ideas presented by Paul Painlevé
in his Stockholm lectures. Bibliography: 34 titles.

1. Introduction

The idea of solvability in finite terms is one of those obscure notions that are commonly
understood to be a historical convention and are in essence the subject of a general agreement
on what this term actually means (see [1]). Thus, when dealing with geometric construction
problems, one fixes a set of tools and a list of rules for using them; when studying algebraic
equations in the framework of Galois theory, one tries to express a solution in terms of a
few radicals; in the theory of differential equations, one tries to express a general solution or
integral in terms of Liouville functions, which means that not only algebraic operations are
allowed, but also calculations of quadratures and exponents, and between the existence of a
Liouville integral and a solution there is a very nontrivial connection [2, 3].

In practice, when solving nonlinear differential equations with the help of computer algebra
systems, one uses different methods. The first computer solver of differential equations, written
by Moses [4] in the early 1960s, was based on the following simple observation: one can decide
whether a given differential equation

p(x, y)dx+ q(x, y)dy = 0

has an integrating factor of the form µ(x) or µ(y) in finitely many steps. It is important
to mention that if a system has a factor of this form, then it is a Liouville function of the
variable. In Maple, integration of differential equations uses special classes of groups for which
one can decide in finitely many steps whether a given differential equation has a group of
symmetries of this class and compute its infinitesimal operator [5–8]. The power of Maple
in solving first-order differential equations is due to the fact that 78% of examples from the
Kamke handbook have linear groups of symmetries [8]. In this case, the infinitesimal operator
can again be expressed in terms of Liouville functions, although this is not assumed a priori.

It is noteworthy that the set of tools used for geometric constructions and the rules of using
them have been changing with time [9, Remark 33]. The list of transcendental functions that
one frequently uses, on the contrary, was formed in the time of Gauss and since then has not
undergone any significant changes. When using, say, Painlevé transcendents, we feel that we
go over some line. Can we actually find a feature that describes the commonly used functions
as a mathematical rather then sociocultural phenomenon? In other words, can we construct
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a version of differential Galois theory for nonlinear differential equations in which the list of
admissible operations is not postulated from the beginning?

All commonly used functions are meromorphic solutions of differential equations. Lazarus
Fuchs suggested to find all first-order differential equations whose general solution does not
have movable singularities except, maybe, poles; now this property is called the Painlevé
property, [10–12]. First-order equations having this property either can be reduced to a linear
second-order equation or can be solved in elementary or elliptic functions, [13, Chap. 2]. How-
ever, Painlevé ( [13, Chap. 3]) discovered that among the second-order differential equations
having the property that bears his name there are equations that lead to absolutely new tran-
scendental functions, so that this property cannot be used to describe the class of commonly
used functions.

In the early 20th century, such a radical expansion of the class of commonly used functions
was received with great enthusiasm, which explains the choice of topics for the 6th Lobachevsky
prize contest held in 1912, see [15]. This perhaps also explains the lack of interest to other,
purely algebraic, ideas expressed in the famous Stockholm lectures by Painlevé [16]. He noticed
that general solutions of differential equations solvable in commonly used functions are not
only meromorphic functions of the independent variable, but also algebraic functions of the
constants. Painlevé managed to invert this assertion for first- and second-order equations.
Briefly, the assertion he proved can be stated as follows: if the general solution depends
algebraically on the constants of integration, then integrating this equation does not lead out
of the realm of commonly used functions complemented by the Abel functions.

In more detail: a first-order equation whose general solution depends algebraically on an
appropriate constant can be reduced by an algebraic change to a first-order equation satisfying
the Painlevé property. We do not cite the original assertions, since in both the article [17]
and the original Lectures they are stated in too much generality, the mistake corrected much
later in the appendix written by Painlevé for Boutroux’s essay [18]. The study of second-
order equations in the Lectures is divided into two parts. First, it is proved that every such
equation can be reduced by an algebraic change to an equation whose general solution depends
rationally on the initial conditions [16, p. 242]. Second, the general solution of such an equation
is described in detail. We give an abridged version of the statement.

Proposition 1 (Painlevé, [16, p. 381]). If the general solution y of a given second-order
equation

f(x, ẋ, ẍ; t) = 0

(where f is a polynomial in x, ẋ, ẍ) depends rationally on the constants x0, ẋ0, ẍ0 related by

f(x0, ẋ0, ẍ0; t0) = 0,

then this integral belongs to one of the following categories:

(1) either this integral can be expressed algebraically;
(2) or x can be expressed rationally in terms of the elliptic functions ℘(u+C) and ℘′(u+C)

where u can be expressed in terms of t by the following quadrature:

u =

∫
h(t)dt,

i.e., x = R(℘(u+C), ℘′(u+C)) and the coefficients of the function R can be expressed
algebraically in terms of the coefficients of the original differential equation and the
second integration constant;

(3) or x can be expressed rationally in Abel functions of the form Al(u, v) and their deriva-
tives with respect to u and v where u and v can be expressed in terms of t by the
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quadratures

u =

∫
h(t)dt+ C1, v =

∫
k(t)dt+ C2;

(4) or the general solution can be expressed rationally in y(t), i.e., x = R(y), where y
satisfies the Riccati equation

ẏ = −y2 + γ(t),

R and γ can be expressed algebraically in terms of the coefficients of the original dif-
ferential equation and an arbitrary constant C;

(5) or x = R(y, ℘(u+ C), ℘′(u+ C)) where u is given by the quadrature

u =

∫
h(t)dt,

y satisfies the Riccati equation

ẏ = −y2 + γ(t),

R can be expressed algebraically in terms of the coefficients of the original differential
equation, and γ may depend rationally on ℘(u+ C) and ℘′(u+ C);

(6) or the original equation can be reduced by an algebraic change to a linear differential
equation.

This theorem leads us to an unexpected conclusion: by fixing the algebraic properties of
the general solution one can derive a class of commonly used transcendental functions. In the
general case, one can pose the following problem.

Problem 1. Describe the transcendental operations required for representing the solutions of
a system of differential equations if it is known that the general solution of this system depends
algebraically on the constants.

The complexity of the statement of Proposition 1 makes us search for more convenient
objects of study. Painlevé started from problems whose solutions were meromorphic functions
of t, and hence chose to study solutions of the Cauchy problem{

f(x, ẋ, ẍ; t) = 0,

(x, ẋ, ẍ)|t=t0 = (x0, ẋ0, ẍ0),

which define a birational correspondence between the surfaces

f(x, y, z; t) = 0 and f(x, y, z; t0) = 0.

These correspondences are hard to incorporate into Galois theory where the main objects of
study are fields. Yet the integrals of a differential equation form fields, thus they are going to
be our main objects in what follows.

The purpose of this paper is to give an outline of a Galois theory for differential equations in
which one does not fix a set of admissible transcendental operations (for first-order differential
equations, such a theory was outlined in our paper [19]). Let us briefly describe the theory,
referring the reader to the subsequent sections for more precise definitions. If a system of
differential equations 

f1(x1, . . . , ẋ1, . . . ; t) = 0,

f2(x1, . . . , ẋ1, . . . ; t) = 0,

· · ·
fn(x1, . . . , ẋ1, . . . ; t) = 0
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has an integral depending on x1, . . . , xn algebraically, then it has an integral that is rational
on the manifold V in the affine space A2n given by the equations

f1(x1, . . . , xn+1, . . . ; t) = 0,

f2(x1, . . . , xn+1, . . . ; t) = 0,

· · ·
fn(x1, . . . , xn+1, . . . ; t) = 0.

All rational integrals of a system of differential equations form a field, which will be called the
field of integrals.

The coefficients of the original system of differential equations generate a differential field
over the field of constants C; we will call it the field of basic functions and assume that it
is given together with the given equation. The coefficients of rational integrals are also some
functions of t. If these coefficients belong to the field of basic functions, then the system
has an algebraic integral, which can immediately be added to the system. Otherwise these
coefficients generate a field over the field of basic functions, which will be called the field of
transcendentals introduced by integrating.

Problem 2. Describe the transcendental operations required for defining the field of transcen-
dentals introduced by integrating a system of differential equations.

The key to this problem is Theorem 11, according to which the field of integrals of a system
of differential equations is equivalent to the field of rational functions on a hypersurface having
a continuous group of birational automorphisms whose dimension coincides with the number
of algebraically independent transcendentals introduced by integrating the system. The proof of
this theorem is the main purpose of the subsequent sections.

Remark. At the scientific session of the National Research Nuclear University MEPhI-2015,
Professor N. A. Kudryashov drew my attention to Hiroshi Umemura’s works devoted to the
nonelementarity of Painlevé transcendentals. In [20], Umemura gave a modern exposition of
some elements of the above-mentioned works by Painlevé in the form of a peculiar Galois
theory. The main object of his theories is a differential equations whose general solution
depends rationally on the initial conditions.

2. Differential equations over the field of basic functions

The algebraic theory of differential equations originates in Weierstrass’ lectures known in
Leo Königsberger’s presentation [21,22] and in Painlevé’s works summarized in his Stockholm
lectures [16]. Old authors worked by default with analytic functions over the field C and treated
degenerate cases too loosely. Modern authors, on the contrary, usually consider solutions of
differential equations as curves on differential manifolds using the standard topology of Rn,
see [23]. However, when studying algebraic questions, it is natural to work in the Zariski
topology.

2.1. Fields of functions. Ordinary differential equations determine a connection between
functions of an independent variable (say, time t) and their derivatives. By increasing the order
of the system of differential equations under consideration, one can usually turn the right-hand
side of the system into a polynomial in the functions and their derivatives whose coefficients
are arbitrary analytic functions of the variable t. Let us assume that the coefficients of the
equations under consideration belong to a given field of functions.

Definition 1. A field of functions of a variable t is a differential field whose elements are
meromorphic functions of the independent variable t in a simply connected domain of the
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complex plane; the differentiation of the field is the differentiation with respect to t, and the
field of constants is the field C of complex numbers.

A field of functions that contains the coefficients of the differential equations under consid-
eration will be called the field of basic functions. A set of functions of the variable t that are
algebraically independent over the field of basic functions will be called transcendental functions
over k, or just transcendentals.

The above-mentioned range of the variable t is called the domain of the field of functions
k and denoted by Dom(k). By the monodromy theorem, functions of the field k are uniquely
determined in this domain.

The value of a function ϕ from the field k at a point t = a is denoted by ϕ|t=a. If g is
a polynomial of the ring k[x1, . . . , xn], then its coefficients depend on t; replacing t with a
number t = a from the field of constants C, we get another element of this field, which we
denote by g|t=a. The differentiation with respect to t can be extended to this ring by setting

∂

∂t
(axm1

1 . . . xmn
n + . . . ) = ȧxm1

1 . . . xmn
n + . . . .

We keep brackets for another thing: if in a polynomial g of the ring k[x1, . . . , xn] we replace
the variables x1, . . . , xn by a point q of the affine space An over the field k, we get an element
of the field k, i.e., a function of the variable t, which we denote by g(q). The differentiation of
the field satisfies the Leibniz rule, hence

dg(q)

dt
=

n∑
i=1

∂g

∂xi
(q) · q̇i +

∂g

∂t
(q).

2.2. Differential equations. In general, the field of basic functions k is closed with respect
to neither algebraic nor differential equations. Let us embed it into an algebraically closed field
K. Unless otherwise stated, we assume that the field of constants of the field K coincides with
C. In this case, the affine space An over K, but not over k, is a standard object of algebraic
geometry, [24, Chap. 1].

Remark 2.1. No algebraically closed extension of the field of basic functions can be regarded
as a field of functions in the sense of Definition 1, since any point of the domain of the
field of basic functions is a branch point for some element of the extension, and thus one
cannot indicate a domain in which the elements of the extension are one-valued functions.
In particular, the substitution t = a cannot be regarded as a uniquely defined map from the
extension K onto C.

The affine space An
k will be regarded as a subset of the affine space An

K . If a is an ideal of
the ring k[x1, . . . , xn], then the set K[x1, . . . , xn]a is an ideal of the ring K[x1, . . . , xn], which
is called the completion of the ideal a in the field K and denoted by aK . The set of points of
the affine space An over k or K at which all polynomials from a vanish is denoted by V (a/k)
or V (a/K), respectively.

In our case, the fields k and K have an additional structure: the differentiation. It can be
applied to every coordinate of a point q of the affine space An, and thus we obtain n elements
of this field. With a point q of the affine space An over K we associate the point

q̇ = (q1, . . . , qn, q̇1, . . . , q̇n)

of the affine space A2n over K. Here the relation q̇ ∈ V (a/K) means that
g1(q1, . . . , qn, q̇1, . . . , q̇n) = 0,

· · · ,
gm(q1, . . . , qn, q̇1, . . . , q̇n) = 0.
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Definition 2. A solution in a differential extension K of the field of basic functions k of a
system of differential equations

g1(x1, . . . , xn, ẋ1, . . . , ẋn) = 0,

· · · ,
gm(x1, . . . , xn, ẋ1, . . . , ẋn) = 0

(1)

whose left-hand sides generate an ideal a = (g1, . . . , gm) of the ring k[x1, . . . , x2n] is a point q
of the affine space An over K such that q̇ belongs to V (a/K).

The set of solutions depends only on the ideal a, but not on the choice of its generators; we
denote this set by S(a/K).

Remark 2.2. We do not assume that the number of differential equations coincides with the
number of unknowns, since otherwise we would have to exclude from consideration very im-
portant examples related to mechanics. For example, in the three-body problem, accelerations
can be expressed rationally in terms of the coordinates of the bodies and the distances between
them, thus taking the Cartesian coordinates of the bodies, their velocities, and the distances
between them as variables, we get a system of differential equations of the form (1) if we add to
the Newton equations the algebraic equations relating the Cartesian coordinates of the bodies
to the distances between them. It is more natural to consider the Newton equations for such
a problem on a manifold, yet this is not a vital necessity.

Remark 2.3. In the theory based on the topology of Rn, solutions of differential equations
are curves on differential manifolds tangents to which nullify the Cartan distribution [23]; in
the Zariski topology, the situation is even simpler: a solution is merely a point of an affine
space regarded over a field of functions.

2.3. Totally consistent and closed systems of differential equations. In Definition 2
we did not fix the number of differential equations, there can be too many of them for the set
of solutions to be nonempty or too few for the derivatives ẋi to be expressible in terms of the
functions xj .

A condition showing that an extension K has sufficiently many solutions of (1) is formulated
analogously to Hilbert’s Nullstellensatz [25].

Definition 3. A system of differential equations (1) is totally consistent over a field K if
for any polynomial f from k[x1, . . . , x2n] vanishing on every solution from S(a/K), one can
find an integer r such that f r belongs to the ideal a generated by the right-hand sides of the
equations of the system.

A condition showing that the number of equations is not too small will be formulated only
for irreducible systems.

Definition 4. A system (1) is irreducible in a field K if the topological space V (a/K) is
irreducible.

Without introducing new transcendental functions one can extend the fields of basic func-
tions in such a way that the given system of differential equations splits into several systems
whose left-hand sides generate irreducible manifolds in the affine space over any extension of
the field of basic functions. This allows us to consider only irreducible systems of differential
equations in what follows. By an irreducible system of differential equations without any spec-
ified field we mean a system that is irreducible over the algebraic closure of the field of basic
functions.

Thus consider an irreducible system of differential equations (1) whose left-hand sides gener-
ate an ideal p, whose complement pK is, consequently, prime. Elements of the field of fractions
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of the ring K[x1, . . . , x2n]/pK , which we denote by R(p/K), will be interpreted as maps from
an open subset of the affine space V (p/K) to K and called rational functions on the affine
space V (p/K). Elements of the field of fractions of the ring k[x1, . . . , x2n]/p, which we denote
by R(p/k), can be regarded not only as rational functions on V (p/k) with values in k, but also
as rational functions on V (p/K) with values in K, i.e., this field of fractions can be regarded
as a subfield in R(p/K).

Definition 5. An irreducible system of differential equations over the field k whose right-hand
sides generate an ideal p of the ring k[x1, . . . , x2n] is closed if there exists a differentiation D
of the field of rational functions on V (p/k) such that for any extension K of the field k the
equality

df(q)

dt
= Df(q)

holds for all q ∈ S(p/K) and f ∈ k[x1, . . . , x2n].

Such a differentiation D can be extended to R(p/K) for any K, and for any monomial we
have

Dxn1
1 . . . xn2n

2n ∈ R(p/k).

3. Puiseux extensions

We turn to the question on the existence of an extension of the original field over which an
irreducible system of differential equations is totally consistent and closed.

3.1. Fields of Puiseux series. In the theory of algebraic numbers, one can embed all fields
into the field C in which all algebraic equations have roots. An analog of the so-called fun-
damental theorem of algebra in the theory of differential equations is the Cauchy theorem,
which gives solutions of systems of differential equations in the form of power series. For an
extension of the field of basic functions to be algebraically closed, we should also take into
account fractional powers. Formal series of the form

a0t
n0 + a1t

n1 + . . . ,

where n0 < n1 < . . . are rational numbers with a common denominator and a0, a1, . . . are
elements of a field K, are called Puiseux series in powers of t with coefficients in the field K;
if K is algebraically closed of characteristic 0, then the set of such series is an algebraically
closed field, [26, Theorem 2.1.5].

Definition 6. The Puiseux extension of the field of basic functions k at a point t = a of the
domain Dom(k) is the field of Puiseux series in powers of t− a with coefficients in the field of
constants of the field of basic functions (i.e., by default, the field C); we denote it by Pa(k).
Instead of V (a/Pa(k)) and S(a/Pa(k)), for brevity we write Va(a) and Sa(a).

Since every function from the field of basic functions can be expanded in Dom(k) into a
Laurent series with finitely many negative powers, a Puiseux extension of the field of basic
functions is an algebraically closed differential extension of the field of basic functions. It
is not, however, a field of functions in the sense of Definition 1, since Definition 6 contains
assumptions neither on convergence nor on the existence of single-valued analytic branches.

3.2. The consistency of a system of differential equations. Instead of the general
Definition 3, we consider first the following one.
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Definition 7. A system of differential equations (1) is totally consistent if for a polynomial f
from k[x1, . . . , x2n] that vanishes on every solution in the Puiseux extension Pa(k) and for
every a from the domain of the field of basic functions k, one can find an integer r such
that f r belongs to the ideal a generated by the right-hand sides of the equations of this system.

Let us show that an irreducible system of n differential equations in n unknown functions
g1(x1, . . . , xn, ẋ1, . . . , ẋn) = 0,

· · ·
gn(x1, . . . , xn, ẋ1, . . . , ẋn) = 0

(2)

is totally consistent in this sense.

Theorem 1. Assume that the Jacobian

j =
∂g1, . . . , gn

∂xn+1, . . . , x2n

of an irreducible system (2) does not belong to the ideal p = (g1, . . . , gn) generated by the left-
hand sides of the equations of the system. If a polynomial f from k[x1, . . . , x2n] vanishes on
every solution from Sa(p) for every a from the domain of the field of basic functions k, then f
belongs to the ideal p.

Proof. The ideal a = (j, g1, . . . , gn) determines a closed subset Va(a) on the manifold Va(p).
Denote by U the complement to Va(a) and take a point p in this domain, which is actually 2n
Puiseux series in powers of t− a.

First assume that these series converge in some neighborhood of the point t = a. A point p
of the manifold V (p) belongs to U if the series j(p) in powers of t−a does not vanish identically,
i.e., if there exists a point t = b such that p|t=b is a point of the affine space A2n over C and
j(p)|t=b 6= 0.

When considering the Cauchy problem, it is convenient, following Painlevé, to introduce
a new independent variable t and agree that the bar over an expression means replacing t
with t. Denote by L the field of Laurent series in powers of t − b with coefficients in the
field k. Then the Cauchy theorem says that for t and t sufficiently close to b, the system of
differential equations under consideration has a solution q in the field L which for t = t takes
the value q̇ = p. Making t take arbitrary complex values close to t = b, we get solutions in
the field Pb(k). By the assumption, the polynomial f vanishes on any solutions from Pb(k)
and, in particular, on the series q̇ whatever value of t we substitute, and hence on these series
regarded as elements of the field L. Substituting into

f(q̇) = 0

the value t = t, we get
f(p) = 0;

since t, as well as t, is a dependent variable, this only means that f(p) = 0.
Now let p′ be an element of the domain U , which is given by formal Puiseux series. For it

we can find a Puiseux series p′′ converging in a neighborhood of t = a such that any number
of the first coefficients of the series f(p′) and f(p′′) coincide. Since the polynomial f vanishes
on p′′, all coefficients of the series f(p′) equal to zero, i.e., f vanishes on the whole open set U .

By our assumption, the extension of the ideal p is a prime ideal, thus the space Va(p) is
irreducible and, therefore, the equality f(p) = 0 can be extended to the whole space Va(p).
Since a Puiseux extension gives an algebraically closed field, by Hilbert’s Nullstellensatz f
belongs to the extension of the ideal p. By the assumption, the coefficients of f lie in the field
of basic functions, hence f ∈ p. �
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Remark 3.1. For the sake of the construction used in the proof of this theorem, above it was
allowed to consider extensions of the field k with fields of constants larger than C.

It would be much more convenient to use one extension instead of the whole family of
Puiseux extensions, assuming, in full agreement with Definition 3, the following.

Definition 8. A system of differential equations (1) is called totally consistent over an exten-
sion K of the field of basic functions if for a polynomial f from K[x1, . . . , x2n] that vanishes
on any solution in the field K, one can find an integer r such that f r belongs to the ideal aK

generated by the right-hand sides of the equations of this system.

By the Painlevé theorem, from the domain of the field of basic functions one can remove a
set of points, called fixed singularities, so that in the remaining domain, analytic solutions of
the given first-order equation

g(x, ẋ) = 0, g ∈ k[x1, x2],

can be continued without meeting any other singularities apart from algebraic ones, [13, p. 51].

Theorem 2. An irreducible first-order differential equation

g(x, ẋ) = 0, g ∈ k[x1, x2],

is totally consistent over the field Pa(k) where t = a is any point of the domain of the field of
basic functions different from the fixed singularities of this equation.

The proof of this theorem repeats the proof of the previous theorem word by word, except
that now f(p) vanishes not because the series q belongs to Sb(p) for any fixed t, but because
we can continue it to the point t = a and get a series from Sa(p).

Unfortunately, already for known mechanical systems, the algebraicity of movable singular-
ities must be proved separately. For example, for the three-body problem it was established
along the real axis and for real initial data that do not nullify the angular momentum of the
system, [27]. For systems solved with respect to derivatives, this property was established
under the assumption that the coefficients are not subject to special conditions, [16].

The proofs given below in Sec. 4 look simpler for systems totally consistent over the field K,
but without extra effort can be extended to systems totally consistent in the sense of Defini-
tion 7.

3.3. The closeness of the differential equations of a system. Under the conditions of
Theorem 1, it is not difficult to prove the closeness of a system (2) of n differential equations
in n unknown functions in the sense of Definition 5.

Let q be any solution from S(p/K); then

fi(q1, . . . , qn, q̇1, . . . , q̇n) = 0,

and thus
n∑

j=1

∂fi
∂xj

(q) · qi+n +
2n∑

j=n+1

∂fi
∂xj

(q) · q̇i +
∂fi
∂t

(q) = 0.

If the Jacobian of the system (2) does not belong to the ideal p, then the system
n∑

j=1

∂fi
∂xj
· xi+n +

2n∑
j=n+1

∂fi
∂xj
· ri +

∂fi
∂t

= 0, i = 1, . . . , n ,
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has a solution (r1, . . . , rn) in the field of rational functions R(p/k) over the field K. Let us
extend the differentiation with respect to t of the field K to a differentiation D of the field
R(p/K) by assuming

Dxi = xi+n, Dxi+n = ri, i = 1, . . . , n.

Then in any point q of S(p/K),

Dxi(q) = xi+n(q) = qi+n = q̇i, i = 1, . . . , n,

and since the system
n∑

j=1

∂fi
∂xj

(q) · xi+n(q) +
2n∑

j=n+1

∂fi
∂xj

(q) · zi +
∂fi
∂t

(q) = 0, i = 1, . . . , n ,

has in K a unique solution (z1, . . . , zn), we have

Dxn+i(q) = zi = q̇n+i, i = 1, . . . , n.

From the 2n equations
Dxi(q) = q̇i, i = 1, . . . , 2n,

and the Leibniz rule it follows that

df(q)

dt
= Df(q).

Thus we have proved the following theorem.

Theorem 3. If the Jacobian

j =
∂g1, . . . , gn

∂xn+1, . . . , x2n
of an irreducible system (2) does not belong to the ideal p = (g1, . . . , gn) generated by the
left-hand sides of the equations of this system, then this system is closed.

4. Rational integrals of a system of differential equations

Let us turn to integrals of an irreducible closed system (1) totally consistent over K whose
right-hand sides generate an ideal p.

4.1. Algebraic integrals. In the theory of differential equations, and especially in me-
chanics, by an algebraic integral of motion one means an algebraic function of the variables
x1, . . . , xn that is constant on any solution.

Definition 9. We say that an equation

a0z
s + · · ·+ as = 0, ai ∈ K[x1, . . . , xn],

determines an algebraic integral of motion if on any solution q from S(a/K) the equation

a0(q)z
n + · · ·+ an(q) = 0

has a root in the field of constants of the field K. This root will be called a fixed root.
A nonconstant function f rational on V (p/K) will be called a rational integral of motion if

on any solution q ∈ S(p/K) the expression f(q̇) lies in the field of constants.

Theorem 4. If an irreducible system is totally consistent and closed over an extension K of
the field of basic functions k, then any equation

a0z
s + · · ·+ as = 0, ai ∈ K[x1, . . . , xn],

that determines an algebraic integral, over the field R(p/K) breaks into several equations such
that the coefficients of at least one of them are rational integrals of the system.
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Remark 4.1. Such assertions are used when searching for algebraic integrals of dynamical
systems, and hence one usually proves them specially for Hamiltonian systems; see, for exam-
ple, [22].

Proof. When an equation

a0z
s + · · ·+ as = 0, ai ∈ K[x1, . . . , xn],

breaks in the field R(p/K) into several equations, then one of them, say

zm + b1z
m−1 + · · ·+ bm = 0, bi ∈ R(p/K),

has a fixed root z = c. Then for every solution q ∈ S(p/K) on which the denominators bi do
not vanish,

cm + b1(q̇)c
m−1 + · · ·+ bm(q̇) = 0;

differentiating this equality with respect to t, we get

db1(q̇)

dt
cm−1 + · · ·+ db1(q̇)

dt
= 0.

Since the system under consideration is closed, this relation can be written as

Db1(q̇)c
m−1 + · · ·+Dbm(q̇) = 0,

which means that the resultant r of the system

{zm + b1z
m−1 + · · ·+ bm = 0, Db1z

m−1 + · · ·+Dbm = 0}
vanishes at every point q̇. By the assumption of the theorem, the system of differential equa-
tions is totally consistent over K, hence it follows that the resultant vanishes at all points of
V (p/K). But then an irreducible equation of order m has common roots with an equation of
smaller order, which can happen only when all the coefficients of this equation vanish, i.e.,

Db1 = · · · = Dbm = 0,

or
db1(q̇)

dt
= · · · = db1(q̇)

dt
= 0,

at every point q ∈ S(p/K). �

The proof of the theorem demonstrates that when integrating a system of differential equa-
tions it is sufficient to restrict oneself to rational integrals of motion. This theorem can easily
be extended to the family of Puiseux extensions from Definition 7.

4.2. The field of rational integrals and its coefficients. If we add the numbers from C
to the rational integrals of the system (1), we get a subfield in the field of rational functions
on V (p/K), which we call the field of rational integrals and denote by I(p/K).

Theorem 5. Every rational function on the manifold V (p/K) can be given by a pair g : h of
polynomials from K[x1, . . . , x2n] whose coefficients belong to the field generated over k by the
values of this function in an appropriate finite set of points of the manifold

V (p/K) ∩A2n
k = V (p/k).

Proof. Take a representation of the function r under consideration as the ratio of polynomials
g : h, from their monomials xn1

1 . . . xn2n
2n choose those that are linearly independent modulo pK

over K, and denote them by m1, . . . ,mu. Any element of the ring K[x1, . . . , x2n]/pK has at
most one representation as a linear combination of these monomials with coefficients from K.
In particular,

g =
∑

gimi, h =
∑

himi.
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We will prove the theorem if we express gi and hi in terms of the values of r at points of
V (p/k).

Take an arbitrary point q1 from V (p/k); then∑
(gi − r(q1)hi) ·mi(q) = 0,

which gives linear homogeneous equations on the coefficients gi and hi. Then take a point q2
and add several more equations to the system which do not follow from the other ones. We
cannot continue this process indefinitely, since otherwise we would obtain a linear homogeneous
system with more equations than unknowns, so that h = 0, which is impossible. Thus at step j
we obtain a system of homogeneous linear equations such that if the coefficients satisfy this
system, then there is no point qj+1 that would violate the relation∑

(gi − r(qj+1)hi) ·mi(qj+1) = 0.

In other words, if the coefficients gi, hi satisfy the system of linear homogeneous equations
constructed in this way, then the function g/h coincides with r at all points of V (p/k).

If these functions do not coincide at some point q from V (p/K), then there is a value t = b
such that

g(q)

h(q)
− r(q)

∣∣∣∣
t=b

6= 0.

But then these functions cannot coincide at a point p from V (p/k) at which

p|t=b = q|t=b,

which is impossible. Thus g/h coincides with r at all points of V (p/K) where they are defined.
It remains to observe that the coefficients of the system of linear homogeneous equations for

gi, hi are the values of monomials at points of V (p/k), i.e., elements of the field k, or products
of such monomials with the values of the function at q1, . . . , qj . Hence we can find a solution
of this system in the field generated over k by the elements r(q1), . . . , r(qj). �

Definition 10. We say that the coefficients of elements of a subfield P of the field R(p/K)
lie in a field k′ if this field lies between k and K and any function r from P at some open set
in V (p/k) takes values in k′. The smallest field that contains the coefficients of P is called the
field of coefficients of the field P and denoted by coef(P ).

Definition 11. The field of coefficients of integrals of a system of differential equations is
called the field of transcendentals introduced by integrating this system. The elements of a
transcendence basis of this field over the field of basic functions are called the transcendentals
introduced by integrating, and the transcendence degree is called the number of transcendentals
introduced by integrating.

This definition allows us to give a rigorous formulation of Problem 2.

Problem 3. Enumerate all transcendentals introduced by integrating systems of differential
equations.

4.3. Properties of the field of integrals. If rational integrals of a totally consistent closed
system of differential equations are algebraically dependent over a field K, then they are
dependent also over the field of constants of the field K. Indeed, if integrals r1, . . . , rs of the
system satisfy an irreducible (over K) relation∑

an1,...,nsr
n1
1 . . . rns

s = 0, an1,...,ns ∈ K,

then ∑
ȧn1,...,nsr

n1
1 . . . rns

s = 0,
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so that the coefficients an1,...,ns necessarily belong to the field of constants.
This observation allows one to characterize the field of integrals as a classical object of

algebraic geometry.

Theorem 6. If a totally consistent closed system of differential equations allows m ratio-
nal integrals, then its field of integrals is isomorphic to the field of rational functions on a
hypersurface in the affine space of dimension m over the field C.

Proof. The transcendence degree of the field R(p/K) over K is finite, it coincides with the
order of the system (1). Thus there are finitely many integrals algebraically independent over
K, say r1, . . . , rs, and any other integral r is connected with them by an algebraic relation
whose coefficients lie in K, and hence also in C. Therefore, the field of integrals I(p/K) is an
algebraic extension of the field C(r1, . . . , rs).

Since the field R(p/K) is finitely generated over K, the composite of K and I(p/K) lying
between K and R(p/K) is also finitely generated over K. If integrals r′, r′′, . . . are linearly
independent over C(r1, . . . , rs), then they are also linearly independent over the composite of
C(r1, . . . , rs) and K. Since the composite of K and I(p/K) is finitely generated over K, there
cannot be infinitely many such elements, hence the field I(p/K) is finite over C(r1, . . . , rs),
and, by the primitive element theorem, in I(p/K) there is an element rs+1 such that adding
it to the field C(r1, . . . , rs) gives the whole field I(p/K). �

Remark 4.2. It is substantial for the proof that we work with fields rather than rings; oth-
erwise we would face the 14th Hilbert problem.

As a consequence of Theorems 5 and 6 we have the following.

Theorem 7. The field of transcendentals introduced by integrating a totally consistent and
closed system of differential equations is finitely generated over the field k. A transcendence
basis of this field is given by the values of appropriate integrals r1, . . . at appropriate points
q′, . . . of the manifold V (p/k).

From the equation Dr = 0 it follows that at any point q in V (p/k)

dr(q)

dt
=
∂r

∂t
(q) +

∑
i

∂r

∂xi
(q) · q̇i = −

∑ ∂r

∂mj
Dmj +

∑
i

∂r

∂xi
(q) · q̇i.

By Definition 5, for any monomial m we have Dmj ∈ R(p/k), hence the function r(q) and its
derivative belong to the field of coefficients of integrals of the system. Thus Theorem 7 implies
the following theorem.

Theorem 8. The field of transcendentals introduced by integrating a totally consistent and
closed system of differential equations is closed under the differentiation with respect to t.

4.4. Automorphisms of the field of transcendentals introduced by integrating. Let
us now turn to automorphisms of the field of transcendentals; for this we use constructions
usual for all Liouville theories which go back to Liouville’s paper on integration in elementary
functions [28], see also [29–31].

Theorem 9. The group of differential k-automorphisms of the field of transcendentals intro-
duced by integrating a totally consistent system of differential equations (1) closed over K is
contained in the group of C-automorphisms of the field of integrals.

Proof. (i) Every differential k-automorphism of a field k′ lying between k and K can be ex-
tended to an automorphism of the field of rational functions on V (p/K) with coefficients
in k′.
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Let T be a differential k-automorphism of the field k′, i.e., an automorphism commuting
with the differentiation of the field k′,

T
dα

dt
=
dTα

dt
,

and leaving the elements of the field k unchanged. This automorphism can be extended to
k′[x1, . . . , x2n]. The generators of the ideal p have coefficients in k, and hence remain fixed,
thus Tp = p.

The automorphism T can be extended to an automorphism of the field of rational functions
on V (p/K) with coefficients in k′ as follows. By Theorem 5, a rational function r can be written
as the ratio g : h of polynomials from k′[x1, . . . , x2n]. Since h 6∈ p implies Th 6∈ Tp = p, the
ratio Tg : Th also determines a rational function on V (p/K) with coefficients in the field
k′. Before we call it the image Tr, we must prove that this function does not change if we
use another representation of r as the ratio of polynomials. Since T leaves the elements of k
unchanged, at a point q of the manifold V (p/k) the function given by the ratio Tg : Th takes
the value T (r(q)), and by Theorem 5 these values uniquely determine a rational function.

(ii) The extension of the automorphism T constructed above commutes with the differenti-
ation D of the field R(p/K).

We use the same construction as in the proof of Theorem 8: if a rational function is repre-
sented as a ratio

r =
g1m1 + . . .

h1m1 + . . .
,

where m1, . . . are monomials linearly independent over K modulo p, then

Dr =
∂r

∂m1
Dm1 + · · ·+ ∂r

∂t
.

Since T leaves the elements of the field k unchanged, we have

TDmi = DTmi = Dmi.

Since T commutes with the differentiation with respect to t,

T
∂r

∂t
=
∂Tr

∂t
.

Thus the extension of T to the rational functions with coefficients in k′ commutes with D.
(iii) If T1 and T2 are two automorphisms of the field k′, then, as we can see from the

construction in (i), the extension of their product T1T2 coincides with the product of their
extensions.

(iv) If k′ is the field of transcendentals, then the extension described in (i) determines a
homomorphism ϕ of the group of differential k-automorphisms of the field k′ to the group of
C-automorphisms of the field of integrals.

Every differential automorphism T of the field of transcendentals k′ can be extended to
an automorphism of the field of rational functions with coefficients in k′. All integrals of
the system lie in this field, and the automorphism sends integrals to integrals, since Dr = 0
implies DTr = TDr = 0. Thus T can be extended to an automorphism of the field I(p/K).
By assumption, C is the field of constants of k, hence T leaves the constants unchanged and
permutes the integrals of the system.

(v) The homomorphism constructed in (iv) is a monomorphism.
An automorphism T of the field of transcendentals different from the identity one moves at

least one element of this field, and hence at least one of the elements

α1 = r1(q1), . . .
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that generate it over the field k changes under the action of T . This means that the value of
at least one integral at least at one point of the manifold V (p/k) changes under the action
of T . �

The field of transcendentals k′ introduced by integrating a system is finitely generated over
the field of basic functions k. Denote a transcendence basis of this field by α1, . . . , αu; the whole
field k′ can be obtained from k(α1, . . . , αu) by adding one primitive element αu+1 connected
with α1, . . . , αu by an irreducible (over k) relation

g(α1, . . . , αu+1) = 0, g ∈ k[y1, . . . , yu+1].

Denote the prime ideal generated by the left-hand side of this equation by q. Since the field
k′ is closed under the differentiation with respect to t, we can find elements fi of the ring
k(y1, . . . , yu)[yu+1] such that

α̇i = fi(α1, . . . , αu+1).

The differential k-automorphism T sends these relations to

dTαi

dt
= fi(Tα1, . . . , Tαu+1).

In other words, differential k-automorphisms send solutions of the system of differential equa-
tions

ẏi = fi(y1, . . . , yu+1) (3)

on the manifold V (q/K) to solutions. Among the coordinates of a point on V (q/K), at most
u can be algebraically independent over k. The solution under consideration

y1 = α1, . . . , yu+1 = αu+1

of the system (3) has a remarkable property: its coordinates have the largest possible tran-
scendence degree over k. Such a solution will be called a totally transcendental solution of the
system.

Definition 12. An extension k′ of the field k of basic functions is called normal in the field K
if

(1) this field is generated over k by a totally transcendental solution of some system of
differential equations over k,

(2) all totally transcendental solutions of this equation in the field K belong to the field k′.

This definition is given by analogy with that of a normal extension in Galois theory; no
confusion is possible, since k′ is not an algebraic extension of k.

Theorem 10. The field of transcendentals introduced by integrating a totally consistent and
closed system of differential equations is a normal extension of the field of basic functions.

Proof. Consider two totally transcendental solutions

y1 = α1, . . . , yu+1 = αu+1 and y1 = β1, . . . , yu+1 = βu+1

of the system (3), the first one generating a field k′ = coef(I(p/k)) and the second one
generating a field k′′. Denote by T the homomorphism k′ → k′′ that sends αi to βi. The
commutation relations established in the proof of Theorem 9 remain valid, hence the extension
of T sends integrals to integrals. The field of coefficients of these integrals at any case belongs
to the field of coefficients of all integrals, i.e., k′ and k′′ satisfy k′′ ⊂ k′ as subfields in K.

On the other hand, β1, . . . , βu+1 are certainly connected by the relation

g(β1, . . . , βu+1) = 0

15



over k, hence β1, . . . , βu cannot be connected by another additional relation and, therefore,
form a transcendence basis of k′′. Since g is irreducible over k,

k′ = k(α1, . . . , αu)[αu+1], k′′ = k(β1, . . . , βu)[βu+1],

and the homomorphism T is a natural homomorphism of these fields. �

Theorem 11. If integrating a totally consistent system of differential equations closed over a
Puiseux extension introduces u transcendentals, then the field of its integrals has a u-parameter
group of C-automorphisms, which is an extension of the group of differential automorphisms
of the field of coefficients of the field of integrals of the system.

Proof. Since the field of transcendentals is a normal extension of the field of basic functions,
every totally transcendental solution of the system (3) in a Puiseux field generates a differ-
ential k-automorphism of this field. By Theorem 9, every such automorphism of the field of
transcendentals generates an automorphism of the field of integrals.

Since the point (α1, . . . , αu+1) belongs to the domain of definition of the right-hand sides of
the system (3), there is a value t = b such that

fi(α1, . . . , αu+1)|t=b ∈ C

for all i. But then the Cauchy problem for the system (3) with the initial conditions

y1 − α1|t=b = c1, . . . , yu − αu|t=b = cu

has a solution in the Puiseux field that depends on u parameters ranging in a neighborhood
of zero. For c1 = · · · = cu = 0, this solution coincides with α1, . . . , αu+1, and hence its
coordinates cannot be connected by any other relation apart from g = 0 and its consequences.
Thus the Cauchy theorem does not give a totally transcendental solution only for those values
of the parameters c1, . . . , cu that do not have a condensation point at zero. Removing them,
we obtain a u-parameter family of totally transcendental solutions of the problem (3). �

As in Galois theory one reduces the analysis of the solvability of algebraic equations of order
n to the analysis of subgroups of the finite group of permutations of n elements, the proven
theorem reduces the study of the solvability of a system of differential equations to the study
of infinite groups of automorphisms of algebraic manifolds.

5. Conclusion

Combining Theorems 6 and 11, we see that the field of integrals of a system of differential
equations is equivalent to the field of rational functions on a hypersurface having a continuous
group of birational C-automorphisms whose dimension coincides with the number of transcen-
dentals introduced by integrating the system.

It is well known that the group of automorphisms of an arbitrary algebraic curve of degree n
is finite (see, e.g., [32]); thus in the suggested version of Galois theory, the analog of a solvable
group among finite groups is a continuous group of automorphisms among automorphisms of
algebraic manifolds. The description of manifolds over C that have infinite groups of birational
automorphisms was the subject of many investigations by Italian geometers [33, no. 39],
[34,35], and the proved theorem opens the way for applying them to the theory of differential
equations.

Translated by D. Kunets and N. Tsilevich.
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