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Abstract

We consider the construction of the fundamental function and Abelian differentials
of the third kind on a plane algebraic curve over the field of complex numbers that
has no singular points. The algorithm for constructing differentials of the third kind is
described in Weierstrass’s Lectures. The article discusses its implementation in the Sage
computer algebra system. The specificity of this algorithm, as well as the very concept
of the differential of the third kind, implies the use of not only rational numbers,
but also algebraic ones, even when the equation of the curve has integer coefficients.
Sage has a built-in algebraic number field tool that allows implementing Weierstrass’s
algorithm almost verbatim. The simplest example of an elliptic curve shows that it
requires too many resources, going far beyond the capabilities of an office computer.
Then the symmetrization of the method is proposed and implemented, which solves the
problem and allows significant economy of resources. The algorithm for constructing
a differential of the third kind is used to find the value of the fundamental function
according to the duality principle. Examples explored in the Sage system are provided.
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Introduction

First successes of computer algebra systems (CAS) are primarily due to the fact
that back in the 1960s, it was possible to create algorithms for the symbolic
integration of elementary functions, based on Liouville work [1, 2, 3]. In the
1980s, the question arose about the development of computer programs that
would allow symbolic integration of algebraic functions (Abelian integrals), see
[4]. In Refs. [5], [6] and [7] algorithms were developed algorithms for integration
of Abelian integrals in elementary functions, but the final set of developed
algorithms are too complicated to be implemented in CAS [8].

Of all the known approaches to Abelian integrals, Weierstrass’s approach
was the most constructive. In Ref. [8], we tried to show that the normal form
of representation of Abelian integrals proposed in the lectures gives solutions
to a number of classical problems and its implementation in computer algebra
systems would be very useful. The key problem on this way, both in the 19th
century and now, is the construction of the fundamental function (Hauptfuk-
tion) or, which is also due to the duality principle, the differential of the third
kind (Art), the construction algorithm of which is described in the last chapter
of Part 1 of the Weierstrass Lectures [9], published in 1902 by Hettner and
Knoblauch. There are no examples of using the algorithm in the text.

A characteristic feature of Weierstrass’ approach is the use of a lot of ir-
rational numbers, the algorithm for determining which is either described in
the text, or more or less obvious [10]. The Sage system [11] has a built-in im-
plementation QQbar of the field of algebraic numbers, added by Carl Witty
in 2007, so in theory the algorithms from the Lectures can be implemented as
written. However, in practice, symbolic expressions containing a ten of numer-
ical coefficients from the field of algebraic numbers QQbar are very difficult
to manipulate. We decided to consider this direct implementation of the algo-
rithms and these expressions themselves and evaluate the difficulties that arise,
see also [12].
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1 Abelian differentials of the first kind

Let polynomial f define an algebraic curve C of the order r on the projective
plane xy over the field C. Let for simplicity this curve have no singular points.

Definition 1. A differential of the form udx, u ∈ C(x, y), having no singular
points on the curve f is called a differential of the first kind.

Problem 1. Given a polynomial f ∈ Q[x, y], find a non-constant rational
function u ∈ C(x, y) such that udx is a differential of the first kind.

The absence of finite singular points makes one seek the solution in the form

E(x, y)dx

fy(x, y)
, E ∈ C[x, y],

and the absence of singular points at infinity indicates the fact that the order of
the polynomial E cannot exceed r− 3. Since no limitations should be imposed
on the coefficients of this polynomial, the set of differentials of the first kind
has the dimension

p =
(r − 1)(r − 2)

2
,

which is called a genus of the curve. For the basis of this space one can take
differentials with the coefficients form the field Q, rather than from its algebraic
closure. Therefore, when constructing differentials of the first kind it is possible
and necessary to work over the field Q.

Algorithms for calculating a basis for the space of differentials of the first kind
for planar curves, including those having singular points, have been proposed
both in classical books and in present-day papers [13]. At present they are
implemented in Maple system (AlgCurves, CASA) and partially in Sage.

2 Abelian differentials of the third kind

Definition 2. A differential of the form udx, u ∈ C(x, y) is called a differential
of the third kind, if it has two singular points, namely, poles of the first order
(x1, y1) and (x2, y2) with residues 1 and −1.
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Problem 2. Given an indecomposable polynomial f ∈ Q[x, y], defining a
projective curve C, and two points (x1, y1) and (x2, y2) on this curve, and
x1, x2, y1, y2 ∈ Q. It is required to construct a non-constant rational function
u ∈ C(x, y) such that udx is a differential of the third kind with the poles
(x1, y1) and (x2, y2).

The addition to the differential of a linear combination of differentials of the
first kind does not give rise to new singularities of change of residues, therefore,
the solution of Problem 2 is defined to a linear combination of p differentials of
the first kind.

We describe here briefly the solution to this problem, following [9, ch. 8].
The absence of finite singular points with x 6= xi makes one seek the solution
in the form

E(x, y)dx

(x− x1)(x2 − x)fy(x, y)
, E ∈ C[x, y],

and the absence of points at infinity indicates the fact that the order of the
polynomial E cannot exceed r − 1. Equation

f(xi, y) = 0

beside the root y = yi has r−1 more roots; let us denote them as y′i, . . . , y
(r−1)
i .

If there are no multiple roots among them, then the equations

E(xi, y
(j)
i ) = 0, i = 1, 2, j = 1, . . . , r − 1 (1)

ensure the absence of singularities at point, different from (x1, y1) and (x2, y2).
Since there are no singular points on the curve and there are no multiples

among the roots f(x1, y) = 0, the neighborhood of the point (x1, y1) can be
uniformized as

x = x1 + t, y = y1 + c1t+ c2t
2 + . . .

Substituting these expressions in

E(x, y)dx

(x− x1)(x2 − x)fy(x, y)
,
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we have
E(x1, y1)

(x2 − x1)fy(x1, y1)

dt

t
+ . . .

Therefore, the residues at point (x1, y1) will be equal to 1 if and only if

E(x1, y1) = (x2 − x1)fy(x1, y1).

Similarly, in the neighborhood (x2, y2) the differential

E(x, y)dx

(x− x1)(x2 − x)fy(x, y)

can be described as
− E(x2, y2)

(x2 − x1)fy(x2, y2)

dt

t
+ . . .

Therefore, the residues at point (x2, y2) will be equal to −1 if and only if

E(x2, y2) = (x2 − x1)fy(x2, y2).

Thus thee conditions for residues at these points give two more equations:

E(x1, y1) = (x2 − x1)fy(x1, y1), E(x2, y2) = (x2 − x1)fy(x2, y2). (2)

As a result, the solution to Problem 2 reduces to the solution of a system of
linear equations (1),(2) with coefficients from QQbar, and the main difference
of Problem 2 from Problem 1 is the necessity to extend the number field.

We wrote an algorithm for solving the problem 2 (Algorithm 1), realized it
in Sage [14].

Example 1. Consider an elliptical curve

x3 − y3 + 2xy + x− 2y + 1 = 0. (3)

and construct the differential of the third kind with pols at points with abscissa
x = 0 and x = 1.

1sage: var("x,y,dx")

2(x, y, dx)

3sage: f=x^3-y^3+2*x*y+x-2*y+1
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Algorithm 1 Algorithm for finding the third kind integrals in the case of simple roots
Require:

Input: f ∈ Q[x, y], points (x1, y1), (x2, y2) of the curve f over the field Q
Output: differentials udx with p arbitrary coefficients, here u is an element of the field
of fractions for the ring Q[x, y]/(f).

Ensure:
step1: Calculate the lists R1 and R2 of the roots of the equations f(x1, y) = 0 and
f(x2, y) = 0 with respect to y. Delete form they the roots y1 and y2.
step2: Add symbolic variables cij and define the expression

E =
∑
i+j≤r

cijx
iyj.

step3: Calculate the lists L of the equations

E|x=xi,y∈Ri
= 0, i = 1, 2.

Add to it the following two equations

E(x1, y1) = (x2 − x1)fy(x1, y1), E(x2, y2) = (x2 − x1)fy(x2, y2).

step3bis (optional): Symmetrization of the obtained equations.
step4: Solve the equations L with respect to cij. Substitute the solution in the expression
E and return

E(x, y)dx

(x− x1)(x2 − x)fy(x, y)
.
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4sage: x1=0

5sage: x2=1

6sage: y1=QQbar[y](f.subs(x=x1)).roots(multiplicities

=False)[0]

7sage: y2=QQbar[y](f.subs(x=x2)).roots(multiplicities

=False)[0]

First three steps of Algorithm 1 was realized as function iii_eqs, which return
six linear equations with six unknowns c0, . . . , c5:

8sage: load("iii.sage")

9None

10sage: iii_eqs(f,[x1,y1],[x2 ,y2])

11[c0 + 0.4533976515164038?* c1 + 0.2055694304005904?*

c2 + 2.616708291201771? , c0 - (0.2266988257582019?

+ 1.467711508710225?*I)*c1 - (2.102784715200295?

- 0.6654569511528135?*I)*c2, c0 -

(0.2266988257582019? - 1.467711508710225?*I)*c1 -

(2.102784715200295? + 0.6654569511528135?*I)*c2 ,

c0 + 1.442249570307409?* c1 + 2.080083823051905?* c2

+ c3 + 1.442249570307409?* c4 + c5 +

6.240251469155713? , c0 - (0.7211247851537042? +

1.249024766483407?*I)*c1 - (1.040041911525953? -

1.801405432764004?*I)*c2 + c3 -

(0.7211247851537042? + 1.249024766483407?*I)*c4 +

c5, c0 - (0.7211247851537042? -

1.249024766483407?*I)*c1 - (1.040041911525953? +

1.801405432764004?*I)*c2 + c3 -

(0.7211247851537042? - 1.249024766483407?*I)*c4 +

c5]

To solve system of equations, Sage uses a standard function solve, which does
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not support the operation with algebraic numbers Therefore, we proceeded to
matrices over the field of algebraic numbers and tried to solve the system of
linear equations by means of function solve_right. However, this function
did not cope with this system in a reasonable amount of time, returning the
warning: increasing stack size to 32000000.

The above example shows that even in the simplest case, a direct imple-
mentation of Algorithm 1 is very costly. Fortunately, the system of equations
(1),(2) consists of two subsystems of the form

E(xi, y
(j)
i ; c0, . . . ) = bi,j, j = 1, 2, . . . r, (4)

where y
(j)
i is the set of roots of equation f(xi, y) = 0 with respect to y. Even

without specifying the form of the right-hand side, we can obtain from this
system r consequences that are symmetric with respect to permutations of the
roots of the equation f(xi, y) = 0:

r∑
j=1

(y
(j)
i )kE(xi, y

(j)
i ; c0, . . . ) = bi,j, k = 0, 1, . . . r − 1. (5)

The coefficients at unknowns in the new system are symmetric functions of the
roots, therefore, they will be rational numbers if such is the considered value of
xi. Therefore, to solve the new system, it is sufficient to invert the matrix with
rational coefficients. System (5) is equivalent to original system (4), since the
new system is obtained from the old one by multiplying by the Vandermonde
matrix 

1 · · · 1
... . . . ...

(y
(1)
i )r−1 · · · (y

(r)
i )r−1

 ,

the determinant of which in the case of simple roots considered is nonzero. The
described transition to symmetrized subsystems will be referred to as SLAE
symmetrization and always carried out before using the Gauss method (step
3bis in the algorithm 1).
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Example 2. Let us return to the example 1. After implementing the first three
steps and the symmetrization in the form of function iii_eqs_sym, we obtain
six linear equations with six unknowns c0, . . . , c5:

12sage: iii_eqs_sym(f,[x1,y1],[x2 ,y2])

13[3*c0 - (4)*c2 + 2.616708291201771? , -(4)*c1 +

(3.000000000000000? + 0.?e-36*I)*c2 +

1.186409393934385? , -4*c0 + 3*c1 +

(8.00000000000000? + 0.?e-36*I)*c2 +

0.5379152329468500? , 3*c0 + 3*c3 + 3*c5 +

6.240251469155713? , 9*c2 + 9, 9*c1 + 9*c4 +

12.980246132766676?]

Now the drawbacks of in the realization of the field of algebraic numbers are
obvious: one of coefficients in the second equation is not identified as rational.
Note, that when operating with algebraic numbers, there is no rounding error
and you can verify its rationality using standard tools:

14sage: eqs=iii_eqs_sym(f,[x1 ,y1],[x2,y2])

15sage: eqs[1]

16-(4)*c1 + (3.000000000000000? + 0.?e-36*I)*c2 +

1.186409393934385?

17sage: eqs [1]. coefficient(c2)

183

The symmetrized SLAE is solved without noticeable expenditure of time.
For convenience we constructed our own user function lsolve which reduces
the equations to the matrix form and solves them by means of function
solve_right:

19sage: lsolve(eqs ,[c0 ,c1,c2,c3 ,c4,c5])

20[c0 == -2.205569430400590? , c1 ==

-0.4533976515164038? , c2 == -1, c3 ==

0.1254856073486862? , c4 == -0.9888519187910046? ,
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c5 == 0]

This function, like the function solve_right itself, returns a partial solution.
The entire algorithm 1 is implemented as function iii that returns the differ-
ential of the third kind, defined up to a linear combination of differentials of
the first kind:

21sage: iii(f,[x1,y1],[x2,y2])

22( -0.9888519187910046?*x*y - y^2 +

0.1254856073486862?*x - 0.4533976515164038?*y -

2.205569430400590?)*dx/((3*y^2 - 2*x + 2)*(x - 1)*

x)

In the example considered, a visually graspable expression is obtained.

Thus, such symmetrization is quite enough for efficient implementation of
the method for constructing a differential of the third kind, proposed in Weier-
strass’s Lectures.

3 Fundamental function

The theory of algebraic curves is based on a seemingly very simple problem.

Problem 3. Given an indecomposable polynomial f ∈ C[x, y] defining a pro-
jective curve C, and s points (xi, yi) on this curve. It is required to construct
a non-constant rational function g ∈ C(x, y), having poles only at given points
and only of the first order.

If the points are not chosen in a special way, then this problem is solvable
only if the number r is greater than some boundary p, remarkably equal to the
genus of the curve.

Definition 3. The points (xi, yi) of the curve C will be called points in general
position if the problem 3 has no solution.
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It is easy to show that solving the problem 3 for any s reduces to solving
the problem for s = p + 1, while the solutions of the problem 3 for points
(a1, b1), . . . , (ap, bp) and (x′, y′) are defined up to two constants, additive and
multiplicative. If we fix the multiplicative constant for the selection of the
residue at the point (x′, y′), then the solution will be determined up to an
additive constant. This solution is referred to as fundamental function in Weier-
strass’s lectures.

Definition 4. We fix p points (ai, bi) in general position on the curve C. The
fundamental function is the solution of the problem (3) for the set of points
obtained by adding one more point to these p points, which will be denoted
below as (x′, y′). For normalization, it is assumed that the residue at this point
is equal to −1.

The definition 4 is convenient for proving the existence of a fundamental
function [9, ch. 2]. The question of its direct use for finding the fundamental
function on a given curve has apparently never even been raised. In the Lectures,
the key to both the use of Abelian integrals in the theory and to the construction
of the fundamental function is the connection between the fundamental function
and the integral of the third kind. Let udx be an Abelian differential of the third
kind, i.e., a differential (def. 2) having two singular points, namely, first-order
poles (x1, y1) and (x2, y2) with residues 1 and −1, and let h be the fundamental
function (def.4). Then the product hudx has poles of the first order at p + 3

points and the residue theorem yields

−h|(x1,y1) + h|(x2,y2) + u|(x′,y′) +

p∑
i=1

ciu|(ai,bi) = 0,

where ci is the residue of the fundamental function at the point (ai, bi). Since
the fundamental function is defined up to an additive constant, it is possible to
assume that h is zero at the point (x2, y2), then

h|(x1,y1) = u|(x′,y′) +

p∑
i=1

ciu|(ai,bi).

11



Since a differential of the third kind is defined up to p constants, it is always
possible to ensure that u|(ai,bi) = 0. But then

h|(x1,y1) = u|(x′,y′), (6)

i.e., the fundamental function multiplied by dx′, as a function of the point
(x′, y′) is a differential of the third kind. In Weierstrass’s lectures a direct proof
is given to this fact, from which both the equality of the genus and the dimension
of the space of differentials of the first kind, and the existence of differentials of
the third kind immediately follows. For us now, it is more important that the

Algorithm 2 Algorithm for calculating the value of the fundametal function at a given
point (x1, y1)

Require:
Input: f ∈ Q[x, y], points (x1, y1), (x2, y2),(x′, y′), (a1, b1), . . . , (ap, bp) of curve f over field
Q
Output: value of the fundamental function h at point (x1, y1), having simple poles at
points (x′, y′), (a1, b1), . . . , (ap, bp), residue −1 at point (x′, y′) and zero at point (x2, y2).

Ensure:
step1: Using points (x1, y1), (x2, y2) construct differential udx of the third kind, defined
up to p constants:

u+

p∑
i=1

ciui,

where ui are integrals of the first kind.
step2: Determine these constants from p equalities

u|(ai,bi) +
p∑

j=1

uj|(ai,bi)cj = 0, i = 1, 2, . . . , p.

step3: Return

u+

p∑
i=1

ciui

∣∣∣∣∣
(x′,y′)

formula (6) allows calculating the value of the fundamental function at almost
any point according to the algorithm 2. It should be noted that the first step can
be performed according to the algorithm 1 only if the equations f(x0, y) = 0
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and f(x1, y) = 0 do not have multiple roots, i.e., we can calculate the values of
the fundamental function not at all points, but at almost all points.

Example 3. Consider again the elliptic curve

x3 − y3 + 2xy + x− 2y + 1 = 0

of genus 1, at which we take the point (1, y2) as a zero of the fundamental
function, and the point (2, b1) as an additional pole (a1, b1). Find the value of
the fundamental function at point (0, y1). We define the ordinates of the points
so that they fall on the curve

23sage: f=x^3-y^3+2*x*y+x-2*y+1

24sage: x1=0

25sage: x2=1

26sage: a1=2

27sage: xx=3

28sage: y1=QQbar[y](f.subs(x=x1)).roots(multiplicities

=False)[0]

29sage: y2=QQbar[y](f.subs(x=x2)).roots(multiplicities

=False)[0]

30sage: b1=QQbar[y](f.subs(x=a1)).roots(multiplicities

=False)[0]

31sage: yy=QQbar[y](f.subs(x=xx)).roots(multiplicities

=False)[0]

Function haupt_fuction_eval returns the value of the fundamental function
at point (x1, y1):

32sage: haupt_fuction_eval(f,[x1,y1],[x2,y2],[xx ,yy

],[[a1,b1]])

330.0812732274979057?

Unfortunately, a very unexpected difficulty arises here: the value of the fun-
damental function is an algebraic number, the minimum polynomial for which
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cannot be calculated in a reasonable time (the warning is “increasing stack size
to 64000000”).

In the process of designing the function haupt_fuction_eval we faced a
number of problems that led to the same warning and offered no possibility
to finish the calculations. We managed to avoid them by dividing a number of
symbolic expressions into parts, each calculated separately. We had to apply
the method subs to individual elements rather than to lists.

4 Conclusion

Summarizing the above, it can be argued that the implication of the algebraic
number field in Sage really allows, at least in simple examples, to implement
Weierstrass’s algorithms almost as described in his Lectures. In doing so, how-
ever, it is important to carry out symmetrization wherever possible. Otherwise,
it will not be possible to get a solution within a reasonable time.

The next step in implementing algorithms, proposed in Weierstrass’s Lec-
tures, is the construction of the fundamental function. For this purpose, it is
sufficient to construct a differential of the third kind with a movable pole. To
execute symmetrization in this case, too, we intend to use a perfect tool —
the package Symmetric Functions for Sage, which allows expressing a symmet-
ric function from a ring K[x1, . . . , xn] as a linear combination of elementary
symmetric functions.
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